nav emailalert searchbtn searchbox tablepage yinyongbenwen piczone journalimg journalInfo searchdiv qikanlogo popupnotification paper paperNew
2025, 07, v.46 81-88
TiZrHfCox高熵金属间化合物合金的微观组织和力学性能
基金项目(Foundation): 辽宁省兴辽英才项目(XLYC2203060)
邮箱(Email): liuliang@lnut.edu.cn;
DOI: 10.13289/j.issn.1009-6264.2025-zt07
摘要:

将高熵合金多主元设计思想与金属间化合物的设计理念相结合,采用真空电弧熔炼法制备了以B2有序金属间化合物为基体的TiZrHfCox(x=2.6~3.2)系列高熵合金,研究了Co含量以及热处理温度对合金晶体结构、微观组织和力学性能的影响。结果表明:该系列高熵合金在铸态和热处理后,其基体均为有序B2结构,值得注意的是,TiZrHfCo2.9合金呈现出单相B2结构,具备高强度的同时还具备一定塑韧性,其屈服强度、抗压强度、压缩率分别为1.25 GPa、1.50 GPa和7.74%;另外,此合金还表现出较强的热稳定性和高温性能,在900℃退火后合金晶体结构没发生改变,在1200℃退火后仍保持较高的强度,其屈服强度和抗压强度分别为1.10和1.27 GPa,而且随退火温度的升高,合金的硬度显著增加。

Abstract:

Combining the multi-principal component design concept of high-entropy alloys with the design philosophy of intermetallic compounds, TiZrHfCox(x=2.6-3.2) series high-entropy alloys with B2 ordered intermetallic compound as the matrix were prepared by vacuum arc melting. The effects of Co content and heat treatment temperature on the crystal structure, microstructure, and mechanical properties of the alloys were studied. The results show that the matrix of this series of high-entropy alloys is an ordered B2 structure in both as-cast and heat-treated states. It is worth noting that the TiZrHfCo2.9 alloy exhibits a single-phase B2 structure, which has high strength and certain plasticity and toughness. Its yield strength, compressive strength, and compression ratio are 1.25 GPa, 1.50 GPa and 7.74%, respectively. In addition, the TiZrHfCo2.9 alloy also exhibits strong thermal stability and high-temperature performance, after annealing at 900 ℃, the crystal structure of the alloy does not change, after annealing at 1200 ℃, the alloy still maintains high strength, with a yield strength and compressive strength of 1.10 GPa and 1.27 GPa, respectively. Moreover, the hardness of the alloy increases significantly with the increase of annealing temperature.

参考文献

[1] Ritchie R O.The conflicts between strength and toughness[J].Nature Materials,2011,10(11):817-822.

[2] Wu Y,Xiao Y,Chen G,et al.Bulk metallic glass composites with transformation-mediated work-hardening and ductility[J].Advanced Materials,2010,22(25):2770-2773.

[3] Fleischer R L.High-strength,high-temperature intermetallic compounds[J].Journal of Materials Science,1987,22:2281-2288.

[4] Lowrie R.Mechanical properties of intermetallic compounds at elevated temperatures[J].JOM,1952,4(10):1093-1100.

[5] Brunelli K,Peruzzo L,Dabalà M.The effect of prolonged heat treatments on the microstructural evolution of Al/Ni intermetallic compounds in multi layered composites[J].Materials Chemistry and Physics,2015,149:350-358.

[6] Yang J,Li Y,Zhang H,et al.Control of interfacial intermetallic compounds in Fe-Al joining by Zn addition[J].Materials Science and Engineering A,2015,645:323-327.

[7] Wen J,Cui H,Wei N,et al.Effect of phase composition and microstructure on the corrosion resistance of Ni-Al intermetallic compounds[J].Journal of Alloys and Compounds,2017,695:2424-2433.

[8] Acharya N,Fatima B,Chouhan S S,et al.Ab-initio study of structural,electronic and elastic properties of cobalt intermetallic compounds[J].Computational Materials Science,2015,98:226-233.

[9] Ochial S,Oya Y,Suzuki T.Alloying behaviour of Ni3Al,Ni3Ga,Ni3Si and Ni3Ge[J].Acta Metallurgica,1984,32(2):289-298.

[10] Zhang X E,Luo H L,Li S P,et al.Effection of alloying elements on microstructures of MX 246 and MX 246A Ni3Al-based alloys[J].Journal of Iron and Steel Research,International,2007,14(5):45-52.

[11] Cantor B,Chang I T,Knight P,et al.Microstructural development in equiatomic multicomponent alloys[J].Materials Science and Engineering A,2004,375:213-218.

[12] Sheng G,Liu C T.Phase stability in high entropy alloys:Formation of solid-solution phase or amorphous phase[J].Progress in Natural Science:Materials International,2011,21(6):433-446.

[13] Gludovatz B,Hohenwarter A,Catoor D,et al.A fracture-resistant high-entropy alloy for cryogenic applications[J].Science,2014,345(6201):1153-1158.

[14] Miracle D B,Senkov O N.A critical review of high entropy alloys and related concepts[J].Acta Materialia,2017,122:448-511.

[15] Zhang Y,Zuo T T,Tang Z,et al.Microstructures and properties of high-entropy alloys[J].Progress in Materials Science,2014,61:1-93.

[16] Egami T,Guo W,Rack P D,et al.Irradiation resistance of multicomponent alloys[J].Metallurgical and Materials Transactions A,2013,45(1):180-183.

[17] 陈镜安,余明赟,宋庭浚,等.热处理对Al0.5CoCrFeNiTi0.15高熵合金微观组织和性能的影响[J].材料热处理学报,2024,45(11):111-120.CHEN Jing-an,YU Ming-yun,SONG Ting-jun,et al.Effect of heat treatment on microstructure and properties of Al0.5 CoCrFeNiTi0.15 highentropy alloy[J].Transactions of Materials and Heat Treatment,2024,45(11):111-120.

[18] Otto F,Dlouhy A,Somsen C.The influences of temperature and microstructure on the tensile properties of a CoCrFeMnNi high-entropy alloy[J].Acta Materialia,2013,61(15):5743-5755.

[19] Juan C C,Tsai M H,Tsai C W,et al.Enhanced mechanical properties of HfMoTaTiZr and HfMoNbTaTiZr refractory high-entropy alloys[J].Intermetallics,2015,62:76-83.

[20] He J,Wang H,Huang H,et al.A precipitation-hardened high-entropy alloy with outstanding tensile properties[J].Acta Materialia,2016,102:187-196.

[21] Yang T,Zhao Y L,Tong Y.Multicomponent intermetallic nanoparticles and superb mechanical behaviors of complex alloys[J].Science,2018,362(6417):933-937.

[22] Harris A R,Jreij P,Belardi B,et al.Biased localization of actin binding proteins by actin filament conformation[J].Nature Communications,2020,11(1):5973.

[23] Lu Y,Dong Y,Guo S,et al.A promising new class of high-temperature alloys:Eutectic high-entropy alloys[J].Scientific Reports,2014,4(1):6200.

[24] Jiang L,Cao Z Q,Jie J C,et al.Effect of Mo and Ni elements on microstructure evolution and mechanical properties of the CoFeNixVMoy high entropy alloys[J].Journal of Alloys and Compounds,2015,649:585-590.

[25] Zhou N,Jiang S,Huang T,et al.Single-phase high-entropy intermetallic compounds (HEICs):Bridging high-entropy alloys and ceramics[J].Science Bulletin,2019,64(12):856-864.

[26] Duan K,Liu L,Yao K,et al.High-entropy intermetallics with striking high strength and thermal stability[J].Materials Letters,2022,321:132424.

[27] Yao K,Zhang Y,Liu L,et al.Microstructure characterization and mechanical properties of AB-typed high-entropy intermetallics with high strength and thermal stability[J].Journal of Alloys and Compounds,2023,947:169616.

[28] Yao K,Liu L,Ren J,et al.High-entropy intermetallic compound with ultra-high strength and thermal stability[J].Scripta Materialia,2021,194:113674.

基本信息:

DOI:10.13289/j.issn.1009-6264.2025-zt07

中图分类号:TG139

引用信息:

[1]尹爽,刘亮,段凯等.TiZrHfCo_x高熵金属间化合物合金的微观组织和力学性能[J].材料热处理学报,2025,46(07):81-88.DOI:10.13289/j.issn.1009-6264.2025-zt07.

基金信息:

辽宁省兴辽英才项目(XLYC2203060)

检 索 高级检索

引用

GB/T 7714-2015 格式引文
MLA格式引文
APA格式引文