7 | 0 | 9 |
下载次数 | 被引频次 | 阅读次数 |
采用光学显微镜(OM)、扫描电镜(SEM)、能谱仪(EDS)、X射线衍射仪(XRD)、显微硬度计和电子万能实验机等研究了Li含量及固溶处理对Mg-Zn-Y-Mn-(Li)镁合金微观组织和力学性能的影响。结果表明:铸态Mg-Zn-Y-Mn-Li合金主要由α-Mg、鱼骨状W相和块状18R LPSO相组成;适量Li的加入能显著细化合金的晶粒,促进LPSO相的形成,抑制W相的产生;当加入0.5 at%Li时,合金的微观组织和力学性能最优,平均晶粒尺寸由41.66μm减小到25.99μm,LPSO相由8.2%提高到23.1%,W相由23.2%降低到7.0%,屈服强度为135 MPa,抗拉强度为257 MPa,伸长率为8.7%;随后对优化得到的合金进行了固溶处理,发现固溶处理可使合金中鱼骨状W相转变为球状W相,18R LPSO相与部分W相溶解并在基体内部形成层片状的14H LPSO相;随固溶处理时间的增加,合金的屈服强度、抗拉强度和伸长率先升高后降低;固溶处理40 h后,合金的力学性能最优,屈服强度为166 MPa,抗拉强度为267 MPa,伸长率为11.7%。
Abstract:Effect of Li content and solution treatment on microstructure and mechanical properties of Mg-Zn-Y-Mn-(Li) magnesium alloy was studied by means of optical microscope( OM), scanning electron microscopy( SEM), energy dispersive spectrometer( EDS)analysis, X-ray diffraction( XRD), microhardness tester and electronic universal testing machine. The results show that the as cast Mg-Zn-Y-Mn-(Li) alloy is mainly composed of α-Mg, fishbone-like W phase and block 18R LPSO phase. The addition of appropriate amount of Li can significantly refine the grain size of the alloy, promote the formation of LPSO phase and inhibit the formation of W phase.When 0. 5 at% Li is added, the microstructure and mechanical properties of the alloy are the best, the average grain size decreases from 41. 66 μm to 25. 99 μm, the content of LPSO phase increases from 8. 2% to 23. 1%, the content of W phase decreases from 23. 2% to 7. 0%, the yield strength is 135 MPa, the tensile strength is 257 MPa, and the elongation is 8. 7%. Subsequently, the optimized alloy was treated by solution treatment. It is found that the fishbone-like W phase in the alloy is transformed into spherical W phase, and the 18R LPSO phase dissolved with part of W phase and form lamellar 14H LPSO phase in the matrix. With the increase of solution treatment time, the yield strength, tensile strength and elongation of the alloy first increase and then decrease. After solution treatment at 500 ℃ for 40 h, the mechanical properties of the alloy are the best, with the yield strength of 166 MPa, the tensile strength of 267 MPa and the elongation of 11. 7%.
[1]任聪林,宽军,曹鑫,等.挤压速度对Mg-2Y-1Zn-0. 4Zr合金组织演变、力学性能和动态腐蚀行为的影响[J].材料热处理学报,2020,41(9):117-125.REN Cong-lin,KUAN Jun, CAO Xin, et al. Effect of extrusion speed on microstructure evolution, mechanical properties and dynamic corrosion behavior of Mg-2Y-1Zn-0. 4Zr alloy[J]. Transactions of Materials and Heat Treatment,2020,41(9):117-125.
[2] Hao J Q,Zhang J S,Li B Q,et al. Effects of 14H LPSO phase on the dynamic recrystallization and work hardening behaviors of an extruded Mg-Zn-Y-Mn alloy[J]. Materials Science and Engineering A,2021,804:140727.
[3] Hao J Q,Zhang J S,Xu C X,et al. Optimum parameters and kinetic analysis for hot working of a solution-treated Mg-Zn-Y-Mn magnesium alloy[J]. Journal of Alloys and Compounds,2018,754:283-296.
[4]宽军,孙毅,韩少兵,等.固溶时效对Mg-2Y-1Zn-0. 4Zr生物镁合金组织和力学性能的影响[J].材料热处理学报,2018,39(5):31-36.KUAN Jun,SUN Yi,HAN Shao-bing,et al. Effect of solid solution and aging treatment on microstructure and mechanical properties of Mg-2Y-1Zn-0. 4Zr biological magnesium alloy[J]. Transactions of Materials and Heat Treatment,2018,39(5):31-36.
[5] Hao J Q,Zhang J S,Wang H X,et al. Microstructure and mechanical properties of Mg-Zn-Y-Mn magnesium alloys with different Zn/Y atomic ratio[J]. Journal of Materials Research and Technology,2022,19:1650-1657.
[6] Hao J Q,Zhang J S,Gong X Y,et al. Hot deformation behavior and workability of the homogenized Mg-5. 8Zn-1. 2Y-1Mn alloy containing I and W phases[J]. Journal of Materials Research and Technology,2021,15:2202-2212.
[7]李盼盼,陈君,李全安,等.热处理对Mg-9Gd-1. 5Zn-0. 3Al合金显微组织及力学性能的影响[J].材料热处理学报,2025,46(3):60-67.LI Pan-pan,CHEN Jun,LI Quan-an,et al. Effect of heat treatment on microstructure and mechanical properties of Mg-9Gd-1. 5Zn-0. 3Al alloy[J]. Transactions of Materials and Heat Treatment,2025,46(3):60-67.
[8]代跃飞,李全安,陈晓亚,等.热处理对Mg-8Gd-2Nd-1Sm-0. 5Zr合金微观组织及力学性能的影响[J].材料热处理学报,2025,46(2):97-105.DAI Yue-fei,LI Quan-an,CHEN Xiao-ya,et al. Effect of heat treatment on microstructure and mechanical properties of Mg-8Gd-2Nd-1Sm-0. 5Zr alloy[J]. Transactions of Materials and Heat Treatment,2025,46(2):97-105.
[9] Xu Q,Ma A T,Saleh B,et al. Enhancement of strength and ductility of Si Cp/AZ91 composites by RD-ECAP processing[J].Materials Science and Engineering A,2020; 771:138579.
[10] Zhang Y G, Liu W, Zhang J S, et al. Influence of micro-alloying with Cd on growth pattern, mechanical properties and microstructure of as-cast Mg94Y2. 5Zn2. 5Mn1 alloy containing LPSO structure[J]. Materials Science and Engineering A,2019,748:294-300.
[11] Luo Z P,Zhang S Q,Tang Y L,et al. Microstructures of Mg-Zn-Zr-RE alloys with high RE and low Zn contents[J]. Journal of Alloys and Compounds,1994,209:275-278.
[12] Kawamura Y,Hayashi K,Inoue A,et al. Rapidly solidified powder metallurgy Mg97Zn1Y2 alloys with excellent tensile yield strength above 600 MPa[J]. Materials Transactions,2001,42:1172-1176.
[13] Zhu Y M,Morton A J,Nie J F. The 18R and 14H long-period stacking ordered structures in Mg-Y-Zn alloys[J]. Acta Materialia,2010,58:2936-2947.
[14] Yang K,Zhang J S,Zong X M,et al. Effect of microalloying with boron on the microstructure and mechanical properties of Mg-ZnY-Mn alloy[J]. Materials Science and Engineering A,2016,669:340-343.
[15] Lee J Y,Kim D H,Lim H K,et al. Effects of Zn/Y ratio on microstructure and mechanical properties of Mg-Zn-Y alloys[J].Journal of Materials Research and Technology,2005,59:3801-3805.
[16] Luo S Q,Tang A T,Pan F S,et al. Effect of mole ratio of Y to Zn on phase constituent of Mg-Zn-Zr-Y alloys[J]. Transactions of Nonferrous Metals Society of China,2011,21:795-800.
[17] Qi F G,Zhang D F,Zhang X H,et al. Effect of Y addition on microstructure and mechanical properties of Mg-Zn-Mn alloy[J].Transactions of Nonferrous Metals Society of China,2014,24:1352-1364.
[18] Li Z,Hao J Q,Liu C R,et al. Hot compression behavior of Mg-Zn-Y-Mn-Ti magnesium alloy enhanced by lamellar LPSO phase and spherical W phase[J]. Journal of Materials Research and Technology,2023,25:4784-4798.
[19] Li D,Zhang J S,Que Z P,et al. Effects of Mn on the microstructure and mechanical properties of long period stacking ordered Mg95Zn2. 5Y2. 5 alloy[J]. Materials Letters,2013,109:46-50.
[20] Wang J,Zhang J S,Zong X M,et al. Effects of Ca on the formation of LPSO phase and mechanical properties of Mg-Zn-Y-Mn alloy[J]. Materials Science and Engineering A,2015,648:37-40.
[21] Zhang J X,Ding X,Chen R R,et al. Synergistic enhancement on mechanical properties and corrosion resistance of biodegradable Mg-Zn-Y alloy via V-microalloying[J]. Journal of Magnesium and Alloys,2024,12:530-545.
[22] Zong X M,Zhang J X,Liu W,et al. Effects of Li on microstructures,mechanical,and biocorrosion properties of biodegradable Mg94-xZn2Y4Lix alloys with long period stacking ordered phase[J]. Advanced Engineering Materials,2017,19:1600606.
[23] Liu W,Zhang J X, Xu C X, et al. High-performance extruded Mg89Y4Zn2Li5dynamical recrystallized grains[J]. Materials and Design,2016,110:1-9.
[24] Hao J Q,Zhang J S,Wang H X,et al. Spheroidization behavior of W phase and transformation process of LPSO phase during solidsolution treatment in Mg-Zn-Y-Mn-Ti alloy[J]. Journal of Materials Research and Technology,2022,21:4940-4949.
[25] Hao J Q,Zhang J S,Xu C X,et al. Effects of spheroidizing treatment on the dynamic recrystallization behavior and yield asymmetry of an extruded Mg94Zn2. 5Y2. 5Mn1 alloy[J]. Materials Science and Engineering A,2019,743:274-279.
基本信息:
DOI:10.13289/j.issn.1009-6264.2025-0207
中图分类号:TG146.22;TG156.94
引用信息:
[1]郝建强,武晓东,任兴远等.Li含量及固溶处理对Mg-Zn-Y-Mn-(Li)镁合金显微组织和力学性能的影响[J].材料热处理学报,2025,46(09):45-53.DOI:10.13289/j.issn.1009-6264.2025-0207.
基金信息:
山西省高等学校科技创新项目(2020L0581); 山西省基础研究计划项目(20210302124424); 国家自然科学基金(51574175,51474153)