nav emailalert searchbtn searchbox tablepage yinyongbenwen piczone journalimg journalInfo searchdiv qikanlogo popupnotification paper paperNew
2025, 09, v.46 54-59
固溶处理对Mg84Y8Zn8合金组织和耐磨性能的影响
基金项目(Foundation): 国家自然科学基金(52461010); 江西省自然科学基金(20242BAB25207); 南昌航空大学第十九届“三小”重点项目(2024ZD145)
邮箱(Email): niatzhanglei01@126.com;
DOI: 10.13289/j.issn.1009-6264.2024-0501
摘要:

采用X射线衍射仪、扫描电镜、透射电镜和摩擦磨损实验等研究了固溶处理对重力铸造法制备的Mg84Y8Zn8合金组织和耐磨性能的影响。结果表明:固溶处理前后,Mg84Y8Zn8合金的组织均主要由LPSO相、W相和α-Mg组成;固溶处理后,合金中LPSO相的体积分数由铸态时的84.8%增加到91.6%,其结构由18R转变为14H型,而W相由9.7%降低到6.4%,合金具有更低的摩擦系数和更小的磨损率,表明固溶处理能改善合金的耐磨性能;当载荷为9 N时,铸态合金磨损机制为严重塑性变形、剥层磨损和严重氧化磨损,而固溶态合金磨损机制为伴随氧化磨损的剥层磨损。

Abstract:

Effect of solution treatment on microstructure and wear resistance of Mg84Y8Zn8alloy prepared by gravity casting method was studied using X-ray diffraction, scanning electron microscopy, transmission electron microscopy, and friction and wear experiments. The results show that the microstructure of the Mg84Y8Zn8 alloy before and after solution treatment is mainly composed of LPSO phase, W phase, and α-Mg phase. After solution treatment, the volume fraction of the LPSO phase in the alloy increases from 84. 8% in the as-cast state to 91. 6%, and its structure changes from 18R to 14H type. Meanwhile, the W phase decreases from 9. 7% to 6. 4%, and the alloy has a lower friction coefficient and lower wear rate, indicating that solution treatment can improve the wear resistance of the alloy. When the load is 9 N, the wear mechanism of the as-cast alloy is severe plastic deformation, delamination wear, and severe oxidative wear,while the wear mechanism of the solution-treated alloy is delamination wear accompanied by oxidative wear.

参考文献

[1]王建利,裴娟,袁姣娜,等. Sn元素对生物医用镁合金Mg-4. 5Zn-Sn显微组织和耐蚀性能的影响[J].材料热处理学报,2018,39(6):26-34.WANG Jian-li,PEI Juan,YUAN Jiao-na,et al. Effect of Sn element on microstructure and corrosion resistance of biomedical Mg-4. 5Zn-Sn alloys[J]. Transactions of Materials and Heat Treatment,2018,39(6):26-34.

[2]王武孝,刘雪雍,王娜,等.超声处理对Mg-9Al-Zn-0. 6Ce-1. 2Ca镁合金组织及耐蚀性的影响[J].材料热处理学报,2019,40(1):44-49.WANG Wu-xiao,LIU Xue-yong,WANG Na,et al. Effects of ultrasonic treatment on microstructure and corrosion resistance of Mg-9Al-Zn-0. 6Ce-1. 2Ca magnesium alloy[J]. Transactions of Materials and Heat Treatment,2019,40(1):44-49.

[3] Trojanova Z,Donic T,Lukac P,et al. Tensile and fracture properties of an Mg-RE-Zn alloy at elevated temperatures[J]. Journal of Rare Earths,2014,32(6):564-572.

[4] Zhang E,Yang L,Xu J,et al. Microstructure,mechanical properties and bio-corrosion properties of Mg-Si(-Ca,Zn)alloy for biomedical application[J]. Acta Biomaterialia,2010,6(5):1756-1762.

[5] Ben-Hamu G,Eliezer D,Shin K S. The role of Mg2Si on the corrosion behavior of wrought Mg-Zn-Mn alloy[J]. Intermetallics,2008,16:860-867.

[6] Wang Y,Zhang Y,Wang P,et al. Effect of LPSO phases and aged-precipitations on corrosion behavior of as-forged Mg-6Gd-2Y-1Zn-0. 3Zr alloy[J]. Journal of Materials Research and Technology,2020,9(4):7087-7099.

[7] Saal J E,Wolverton C. Thermodynamic stability of Mg-based ternary long-period stacking ordered structures[J]. Acta Materialia,2014,68:325-338.

[8] Zhu Y M,Morton A J,Nie J F. The 18R and 14H long-period stacking ordered structures in Mg-Y-Zn alloys[J]. Acta Materialia,2010,58(8):2936-2947.

[9] Kawamura Y,Yamasaki M. Formation and mechanical properties of Mg97Zn1RE2 alloys with long-period stacking ordered structure[J]. Materials Transactions,2007,48:2986-2992.

[10] Wang Y,Zhang F,Wang Y,et al. Effect of Zn content on the microstructure and mechanical properties of Mg-Gd-Y-Zr alloys[J].Materials Science and Engineering A,2019,745:149-158.

[11] Wen K,Du W B,Liu K,et al. Precipitation behavior of the 14H-LPSO structure in Mg-12Gd-2Er-1Zn-0. 6Zr alloy[J]. Rare Metals,2015,43(4):369-375.

[12] An J,Xuan X H,Zhao J,et al. Dry sliding wear behavior and subsurface microstructure evolution of Mg97Zn1Y2 alloy in a wide sliding speed range[J]. Journal of Materials Engineering&Performance,2016,25:5363-5373.

[13] Matsuda M,Li S,Kawamura Y,et al. Variation of long-period stacking order structures in rapidly solidified Mg97Zn1Y2 alloy[J].Materials Science and Engineering A,2005,393:269-274.

[14] Lyu J,Kim J,Liao H,et al. Effect of substitution of Zn with Ni on microstructure evolution and mechanical properties of LPSO dominant Mg-Y-Zn alloys[J]. Materials Science and Engineering A,2020,773:138735.

[15] Han D,Chen H,Zang Q,et al. Effect of solution treatment on microstructure and properties of Mg-6Gd-3Y-1. 5Zn-0. 6Zr alloy[J].Materials Characterization,2020,163:110295.

[16] Yang X,Wu S S,Lv S L,et al. Effects of Ni levels on microstructure and mechanical properties of Mg-Ni-Y alloy reinforced with LPSO structure[J]. Journal of Alloys and Compounds,2017,726:276-283.

[17] Liao H,Kim J,Lee T,et al. Effect of heat treatment on LPSO morphology and mechanical properties of Mg-Zn-Y-Gd alloys[J].Journal of Magnesium and Alloys,2020,8(4):1120-1127.

[18] Wang D,Wu H,Wu R,et al. The transformation of LPSO type in Mg-4Y-2Er-2Zn-0. 6Zr and its response to the mechanical properties and damping capacities[J]. Journal of Magnesium and Alloys,2020,8(3):793-798.

[19] Luo Z P,Zhang S Q. High-resolution electron microscopy on the X-Mg12Zn Y phase in a high strength Mg-Zn-Ti-Y magnesium alloy[J]. Journal of Materials Science Letters,2000,19:813-815.

[20] Qin D H,Wang J F,Chen Y L,et al. Effect of long period stacking ordered structure on the damping capacities of Mg-Ni-Y alloys[J]. Materials Science and Engineering A,2015,624:9-13.

[21] Hu M,Wang Q,Chen C,et al. Dry sliding wear behaviour of Mg-10Gd-3Y-0. 4Zr alloy[J]. Materials&Design,2012,42(42):223-229.

[22] Zhang L,Huang H,Zhang S J,et al. Microstructure,Mechanical properties and tribological behavior of two-phase Mg-Y-Cu alloys with long period stacking ordered phases[J]. Metals and Materials International,2021,27:1605-1612.

[23] Xiao P,Gao Y M,Xu F X,et al. Tribological behavior of in-situ nanosized Ti B2 particles reinforced AZ91 matrix composite[J].Tribology International,2018,128:130-139.

[24] Das S,Morales A,Alpas A T. Microstructural evolution during high temperature sliding wear of Mg-3%Al-1%Zn(AZ31)alloy[J]. Wear,2010,268:94-103.

[25] An J,Li R G,Lu Y,et al. Dry sliding wear behavior of magnesium alloys[J]. Wear,2008,265:97-104.

基本信息:

DOI:10.13289/j.issn.1009-6264.2024-0501

中图分类号:TG146.22;TG156.94

引用信息:

[1]马鑫洁,张磊.固溶处理对Mg_(84)Y_8Zn_8合金组织和耐磨性能的影响[J].材料热处理学报,2025,46(09):54-59.DOI:10.13289/j.issn.1009-6264.2024-0501.

基金信息:

国家自然科学基金(52461010); 江西省自然科学基金(20242BAB25207); 南昌航空大学第十九届“三小”重点项目(2024ZD145)

检 索 高级检索

引用

GB/T 7714-2015 格式引文
MLA格式引文
APA格式引文