12 | 0 | 19 |
下载次数 | 被引频次 | 阅读次数 |
通过水冷铜坩埚磁悬浮熔炼炉和负压铜模吸铸法制备了(TiZrHf)50Ni30Cu20-xCox(x=2、4和6 at%)高熵形状记忆合金,采用电化学工作站测试其在3.5 mass%NaCl溶液中的腐蚀性能。结果表明:(TiZrHf)50Ni30Cu20-xCox合金由B2相和B19′相构成,随着Co含量的增加,B2相的衍射峰强度逐渐增加,同时合金的混合熵也增大;合金在3.5 mass%NaCl溶液中表现出钝化行为,随着Co含量的增加,合金的腐蚀电流密度减小,点蚀电位、容抗弧半径和极化电阻增大,同时点蚀坑数量逐渐减少,表明合金的耐腐蚀性能提高;X射线光电能谱分析表明(TiZrHf)50Ni30Cu14Co6合金的钝化膜主要由NiO和Cu2O等组成,能有效阻止Cl-对基体的进一步侵蚀,而Co(OH)2有助于提升膜层的致密性和吸附能力。
Abstract:(TiZrHf)50Ni30Cu20-xCox(x=2 at%, 4 at% and 6 at%) high-entropy shape memory alloys were prepared by water-cooled copper crucible magnetic levitation melting furnace and negative pressure copper mold suction casting method.Their corrosion performance in 3.5 mass% NaCl solution was tested using an electrochemical workstation. The results show that the(TiZrHf)50Ni30Cu20-xCox alloys are composed of B2 phase and B19′ phase. With the increase of Co content, the diffraction peak intensity of B2 phase increases gradually, and the mixing entropy of the alloys also increases. The alloys exhibit passivation behavior in 3.5 mass% NaCl solution. With the increase of Co content, the corrosion current density of the alloys decreases, while the pitting potential, capacitive arc radius and polarization resistance increase, and the number of pitting pits gradually decreases, indicating that the corrosion resistance of the alloys is improved. X-ray photoelectron spectroscopy analysis shows that the passivation film of the(TiZrHf)50Ni30Cu14Co6 alloy is mainly composed of NiO and Cu2O, which can effectively prevent the further erosion of Cl- to the matrix, while Co(OH)2 helps to improve the density and adsorption capacity of the film.
[1] 李延超,李来平,高选乔,等.难熔高熵合金研究进展[J].稀有金属材料与工程,2020,49(12):4365-4372.LI Yan-chao,LI Lai-ping,GAO Xuan-qiao,et al.Research progress of refractory high entropy alloys[J].Rare Metal Materials and Engineering,2020,49(12):4365-4372.
[2] Firstov G S,Kosorukova T A,Koval Y N,et al.High entropy shape memory alloys[J].Mater Today Proceedings,2015,2(3):499-503.
[3] Muhammad A J,Burkhard M,Daniel Z,et al.Black body cavity apparatus for measuring the emissivity of Nickel-Titanium-based shape-memory alloys and other metals[J].International Journal of Thermophysics,2024,45(11):157.
[4] Sato A,Mori T.Development of a shape memory alloy Fe-Mn-Si[J].Nihon Kessho Gakkaishi,1987,29(3):201-208.
[5] Du F,Deng L,Zhang M,et al.Mechanical response and phase transformation characteristics of R-phase NiTi shape memory alloy under high strain rate compression[J].Materials Today Communications,2024,39:109353.
[6] Dasgupta R.A look into Cu-based shape memory alloys:Present scenario and future prospects[J].Journal of Materials Research,2014,29(16):1681-1698.
[7] Kainuma R,Ito K,Ito W,et al.NiMn-based metamagnetic shape memory alloys[J].Scripta Materialia,2010,116:1-6.
[8] 赵燕春,冯远飞,冯力,等.高熵形状记忆合金相变行为研究现状[J].稀有金属材料与工程,2024,53(3):848-855.ZHAO Yan-chun,FENG Yuan-fei,FENG Li,et al.Research status of phase transition behavior of high entropy shape memory alloys[J].Rare Metal Materials and Engineering,2024,53(3):848-855.
[9] Otsuta K,Ren X.Physical metallurgy of Ti-Ni-based shape memory alloys[J].Progress in Materials Science,2005,50:511-678.
[10] Miyazaki S,Ishida A.Martensitic transformation and shape memory behavior in sputter-deposited TiNi-base thin films[J].Materials Science and Engineering A,1999,273:106-133.
[11] 贺志荣.TiNi形状记忆合金的工程应用研究现状和展望[J].材料导报,2005(4):50-53.HE Zhi-rong.Research status and prospect of engineering application of TiNi shape memory alloy[J].Materials Review,2005(4):50-53.
[12] Firstov G,Koval Y,Van Humbeeck J,et al.Some physical principles of high temperature shape memory alloys design[J].Materials Science Foundations,2015,81:207-231.
[13] Firstov G S,Kosorukova T A,Koval Y N,et al.Directions for high-temperature shape memory alloys’ improvement:Straight way to high-entropy materials?[J].Shape Memory and Superelasticity,2015,1(4):400-407.
[14] 李斌强,王亮,姚龙辉,等.高熵形状记忆合金的研究进展[J].稀有金属材料与工程,2021,50(6):2208-2214.LI Bin-qiang,WANG Liang,YAO Long-hui,et al.Research progress of high entropy shape memory alloys[J].Rare Metal Materials and Engineering,2021,50(6):2208-2214.
[15] Shun T T,Chang L Y,Shiu M H.Microstructures and mechanical properties of multiprincipal component CoCrFeNiTix alloys[J].Materials Characterization,2012,70:63-67.
[16] 王瑞,王镇华,刘海洋,等.高熵形状记忆合金的研究进展[J].材料热处理学报,2024,45(3):1-11.WANG Rui,WANG Zhen-hua,LIU Hai-yang,et al.Research progress of high entropy shape memory alloys[J].Transactions of Materials and Heat Treatment,2024,45(3):1-11.
[17] Yin M Y,Zhuo L,Zhu X,et al.Corrosion behavior of Cu-Al-Mn-Zn-Zr shape memory alloy in NaCl solution[J].Transactions of Nonferrous Metals Society of China,2021,31(4):1012-1022.
[18] 杨晓伟.FeCoNixMnTiy高熵形状记忆合金的制备与性能研究[D].秦皇岛:燕山大学,2023.YANG Xiao-wei.Preparation and properties of FeCoNixMnTiy high entropy shape memory alloy[D].Qinhuangdao:Yanshan University,2023.
[19] 王晓威,黄本生,武博文,等.等离子熔覆 CrMnFeCoNiMox高熵合金涂层的组织、硬度和腐蚀性能[J].材料热处理学报,2023,44(4):169-176.WANG Xiao-wei,HUANG Ben-sheng,WU Bo-wen,et al.Microstructure,hardness and corrosion resistance of plasma cladded CrMnFeCoNiMox high-entropy alloy coating[J].Transactions of Materials and Heat Treatment,2023,44(4):169-176.
[20] 郑宝星,邓小虎,董纪.显微组织对25CrMo48V超高强度钢在NaCl溶液中腐蚀行为的影响[J].材料热处理学报,2020,41(4):107-115.ZHENG Bao-xing,DENG Xiao-hu,DONG Ji.Effect of microstructure on corrosion behavior of 25CrMo48V ultra-high strength steel in NaCl solution[J].Transactions of Materials and Heat Treatment,2020,41(4):107-115.
[21] Yang Z,Ma A,Xu B,et al.Corrosion behavior of AZ91 Mg alloy with a heterogeneous structure produced by ECAP[J].Corrosion Science,2021,187:109517.
[22] Wang J,Jiang H,Chang X,et al.Effect of Cu content on the microstructure and corrosion resistance of AlCrFeNi3Cux high entropy alloys[J].Corrosion Science,2023:111313.
[23] Zhao M,Wu H,Lu J,et al.Effect of grain size on mechanical property and corrosion behavior of a metastable austenitic stainless steel[J].Materials Characterization,2022,194:112360.
[24] Gu Z J,Tian Y Z,Xu W,et al.Optimizing transformation-induced plasticity in CoCrNi alloys by combined grain refinement and chemical tuning[J].Scripta Materialia,2022,214:114658.
[25] Wang Z,Jin J,Zhang G H,et al.Effect of temperature on the passive film structure and corrosion performance of CoCrFeMoNi high-entropy alloy[J].Corrosion Science,2022,208:110661.
[26] Wang Z,Feng Z,Zhang L.Effect of high temperature on the corrosion behavior and passive film composition of 316L stainless steel in high H2S-containing environments[J].Corrosion Science,2020,174:108844.
[27] Luo H,Li Z,Mingers A M,et al.Corrosion behavior of an equiatomic CoCrFeMnNi high-entropy alloy compared with 304 stainless steel in sulfuric acid solution[J].Corrosion Science,2018,134(15):131-139.
[28] Ma J,Zhang B,Fu Y,et al.Effect of cold deformation on corrosion behavior of selective laser melted 316L stainless steel bipolar plates in a simulated environment for proton exchange membrane fuel cells[J].Corrosion Science,2022,201:110257.
[29] Wang Z,Zhang G H,Fan X H,et al.Corrosion behavior and surface characterization of an equiatomic CoCrFeMoNi high-entropy alloy under various pH conditions[J].Journal of Alloys and Compounds,2022,900:163432.
[30] Camila B N,Uyime Do,Carlos T R,et al.Electronic properties of the passive films formed on CoCrFeNi and CoCrFeNiAl high entropy alloys in sodium chloride solution[J].Journal of Materials Research and Technology,2020,9(6):13879-13892.
[31] Kumar T S,Chauhan L,Chakravarthy K,et al.The improved galvanic corrosion resistance of a eutectic high entropy alloy through heat treatment[J].Journal of Materials Research,2022,37(23):4211-4221.
[32] Niu J,Chu C,Chen Q,et al.Microstructure,mechanical behavior,and cavitation erosion-corrosion resistance of the BCC/B2 strengthened FeNiCrMoAl-based multi-principal element alloys[J].Corrosion Science,2024,241:112560.
[33] Wang R X,Zhang E L.Synergistic effect of Ni and Cu on the microstructure,corrosion properties and mechanical properties of as-cast biomedical Co-based alloy[J].Metals,2022,12(8):1322-1322.
[34] 周亮,陈送义,彭振凌,等.微量Co对7056铝合金组织与腐蚀性能的影响[J].材料导报,2019,33(2):314-320.ZHOU Liang,CHEN Suo-yi,PENG Zhen-ling,et al.Effect of trace Co on microstructure and corrosion properties of 7056 aluminum alloy[J].Materials Reports,2019,33(2):314-320.
[35] 张娟.微量元素对铝黄铜的腐蚀性能影响[D].长沙:中南大学,2010.ZHANG Juan.Effect of trace elements on the corrosion properties of aluminum brass[D].Changsha:Central South University,2010.
[36] Cao Z Q,Yin X T,Jia Z Q,et al.Corrosion behavior of bulk two-phase Ag-25Cu alloys with different microstructures in NaCl aqueous solution[J].Transactions of Nonferrous Metals Society of China,2019,29(7):1495-1502.
[37] Zhang G,Khanlari K,Huang S,et al.Dual-structured oxide coatings with enhanced wear and corrosion resistance prepared by plasma electrolytic oxidation on Ti-Nb-Ta-Zr-Hf high-entropy alloy[J].Surface and Coatings Technology,2023,456:129254.
基本信息:
DOI:10.13289/j.issn.1009-6264.2025-zt02
中图分类号:TG139.6;TG172
引用信息:
[1]于志琦,赵燕春,苏玉等.(TiZrHf)_(50)Ni_(30)Cu_(20-x)Co_x高熵形状记忆合金的腐蚀行为[J].材料热处理学报,2025,46(07):64-72.DOI:10.13289/j.issn.1009-6264.2025-zt02.
基金信息:
兰州市青年人才创新项目(2023-QN-91); 甘肃省科技计划(25CXGA077); 国家自然科学基金(12404230,52061027); 浙江省自然科学基金项目(LY23E010002)