nav emailalert searchbtn searchbox tablepage yinyongbenwen piczone journalimg journalInfo searchdiv qikanlogo popupnotification paper paperNew
2025, 06, v.46 61-69
单相区短时固溶及时效处理对亚稳β钛合金组织和拉伸性能的影响
基金项目(Foundation):
邮箱(Email): qysun@xjtu.edu.cn;
DOI: 10.13289/j.issn.1009-6264.2024-0370
摘要:

研究了在β相区(830℃)短时间固溶及时效处理对Ti-Al-Mo-V-Cr-Nb钛合金显微组织和室温拉伸性能的影响。结果表明:经过短时固溶和525℃时效4 h,随着固溶时间从2 min延长到15 min,合金中微米尺度等轴初生α相(αp相)的数量减少,面积分数从3.8%下降到0.18%,β晶粒平均直径从6.7μm增加到11.9μm,抗拉强度从1456 MPa增加到1491 MPa,屈服强度从1390 MPa增加到1424 MPa,断后伸长率从8.5%下降到4.2%,塑性显著降低;随着短时固溶时间的延长,合金在拉伸过程中裂纹萌生位置由αp相边界处萌生转向晶界处萌生,断口由韧窝型断口转为准解理断口。

Abstract:

Effect of short-time solution treatment in the β phase region( 830 ℃) and aging treatment on microstructure and room temperature tensile properties of Ti-Al-Mo-V-Cr-Nb titanium alloy was studied. The results show that after short-time solution treatment and aging at 525 ℃ for 4 h, as the solution treatment time increases from 2 min to 15 min, the number of micron scale equiaxed primary α phase(αP phase) of the alloy decreases, its area fraction decreases from 3. 8% to 0. 18%, the average diameter of β grains increases from 6. 7 μm to 11. 9 μm, the tensile strength increases from 1456 MPa to 1491 MPa, the yield strength increases from 1390 MPa to 1424 MPa, and the elongation decreases from 8. 5% to 4. 2%, showing the plasticity significantly decreases. With the increase of shorttime solution treatment time, the crack initiation position of the alloy during the tensile shifts from the αP phase boundary to the grain boundary, and the fracture surface changes from a ductile dimple fracture to a quasi-cleavage fracture.

参考文献

[1]李中.钛及钛合金在汽车上的应用[J].中国有色金属学报,2010,20(S1):17-19.LI Zhong. Applications of titanium and titanium alloys in automotive field[J]. The Chinese Journal of Nonferrous Metals,2010,20(S1):17-19.

[2]彭西洋,李雪峰.钛合金在汽车工业中的应用现状及前景展望[J].汽车工艺师,2023,4:56-59.PENG Xi-yang,LI Xue-feng. Application status and prospect of titanium alloy in the automotive industry[J]. Auto Manufacturing Engineer,2023,4:56-59.

[3]陈军,王廷询,周伟,等.国内外船用钛合金及其应用[J].钛工业进展,2015,32(6):8-12.CHEN Jun,WANG Ting-xun,ZHOU Wei,et al. Domestic and foreign marine titanium alloy and its application[J]. Titanium Industry Progress,2015,32(6):8-12.

[4]杨冬雨,付艳艳,惠松骁,等.高强高韧钛合金研究与应用进展[J].稀有金属,2011,35(4):575-580.YANG Dong-yu,FU Yan-yan,HUI Song-xiao,et al. Research and application of high strength and high toughness titanium alloys[J]. Chinese Journal of Rare Metals,2011,35(4):575-580.

[5] Ivasishin O M,Markovsky P E,Matviychuk Y V,et al. A comparative study of the mechanical properties of high-strength β-titanium alloys[J]. Journal of Alloys and Compounds,2008,457(12):296-309.

[6] Zhao Q,Sun Q,Xin S,et al. High-strength titanium alloys for aerospace engineering applications:A review on melting-forging process[J]. Materials Science and Engineering A,2022,845(15):143260-143325.

[7] Pesode P,Barve S. A review-metastable β titanium alloy for biomedical applications[J]. Journal of Engineering and Applied Science,2023,70(1):1-36.

[8] Wei Z,Peng G,Yong Q Z,et al. Relationship between mechanical properties and microstructure in a new high strength β titanium alloy[J]. Rare Metal Materials and Engineering,2017,46(8):2076-2079.

[9]吴晓东,杨冠军,葛鹏,等. β钛合金及其固态相变的归纳[J].钛工业进展,2008,25(5):1-6.WU Xiao-dong,YANG Guan-jun,GE Peng,et al. β induction of titanium alloys and their solid-state phase transitions[J]. Titanium Industry Progress,2008,25(5):1-6.

[10]王鹏宇,张浩宇,张志鹏,等.固溶温度对亚稳β钛合金Ti-4Mo-6Cr-3Al-2Sn的组织和拉伸性能的影响[J].材料研究学报,2020,34(6):473-480.WANG Peng-yu, ZHANG Hao-yu, ZHANG Zhi-peng, et al. Effect of solution temperature on the microstructure and tensile properties of metastable β titanium alloy Ti-4Mo-6Cr-3Al-2Sn[J]. Chinese Journal of Materials Research,2020,34(6):473-480.

[11] Santhosh R,Geetha M,Saxena V K,et al. Effect of duplex aging on microstructure and mechanical behavior of beta titanium alloy Ti-15V-3Cr-3Al-3Sn under unidirectional and cyclic loading conditions[J]. International Journal of Fatigue,2015,73(4):88-97.

[12] Yumak N,Aslantas K. A review on heat treatment efficiency in metastable β titanium alloys:the role of treatment process and parameters[J]. Journal of Materials Research and Technology,2020,9(6):15360-15380.

[13]蒋小娟,杨刚,詹正阳,等.热处理制度对Ti-1023钛合金微观组织及力学性能的影响[J].金属热处理,2023,48(12):116-122.JIANG Xiao-juan,YANG Gang,ZHAN Zheng-yang,et al. Effect of heat treatment on microstructure and mechanical properties of Ti-1023 titanium alloy[J]. Heat Treatment of Metals,2023,48(12):116-122.

[14]张启飞,杨帅,刘书君,等.时效处理对Ti55531钛合金微观组织演变规律及力学性能的影响[J].稀有金属材料与工程,2022,51(7):2646-2652.ZHANG Qi-fei,YANG Shuai,LIU Shu-jun,et al. Effect of aging treatment on microstructure evolution and mechanical properties of Ti55531 titanium alloy[J]. Rare Metal Materials and Engineering,2022,51(7):2646-2652.

[15] Shashi S,Rajdeep S,Sujoy K K,et al. Effect of solution treatment and aging on microstructure and tensile properties of high strength β titanium alloy Ti-5Al-5V-5Mo-3Cr[J]. Materials and Design,2015,66:596-610.

[16] Mantri S,Choudhuri D C,Alam T,et al. Tuning the scale of α precipitates in β-titanium alloys for achieving high strength[J].Scripta Materialia,2018,154:139-144.

[17]安怡,寇文娟,高婷,等.固溶温度对Ti-1300合金时效析出行为与性能的影响[J].金属热处理,2020,46(9):29-36.AN Yi,KOU Wen-juan,GAO Ting,et al. Effect of solution temperature on aging precipitation behavior and properties of Ti-1300alloy[J]. Heat Treatment of Metals,2020,46(9):29-36.

[18] Liu L L, Huang M D, Geng D H, et al. Achieving high strength and ductility of a metastable β-titanium alloy via coupling thermomechanical processing and heat treatments[J]. Materials Science and Engineering A,2024,891:145970.

[19]黄晓文,刘乐梁,刘继雄,等.高强钛合金层片组织拉伸变形中的裂纹萌生与扩展行为[J].金属热处理,2023,48(10):78-86.HUANG Xiao-wen,LIU Le-liang,LIU Ji-xiong,et al. Crack initiation and propagation behavior in tensile deformation of highstrength titanium alloy with lamellar microstructure[J]. Heat Treatment of Metals,2023,48(10):78-86.

[20]夏晓洁,吴国清,黄正,等.固溶时效处理对高强高韧钛合金显微组织与力学性能的影响[J].北京航空航天大学学报,2015,41(7):1294-1299.XIA Xiao-jie,WU Guo-qing,HUANG Zheng,et al. Effects of solution-aging treatment on microstructure and mechanical properties of a high-strength and high-toughness titanium alloy[J]. Journal of Beijing University of Aeronautics and Astronautics,2015,41(7):1294-1299.

[21] Schmidt P,El C A, Christ H J. Effect of duplex aging on the initiation and propagation of fatigue cracks in the solute-rich metastable β titanium alloy Ti38-644[J]. Metallurgical and Materials Transactions A,2011,42(9):2652-2667.

[22]邱建科,马英杰,吉海滨,等. Mo含量对钛合金晶粒长大行为及力学性能的影响[J].中国有色金属学报,2013,12(1):153-158.QIU Jian-ke,MA Ying-jie,JI Hai-bin,et al. Effect of Mo content on grain growth behavior and mechanical properties of titanium alloys[J]. The Chinese Journal of Nonferrous Metals,2013,12(1):153-158.

[23]李沛,高婷,寇文娟,等.时效过程中ω相辅助α相形核及α相对Ti-1300合金力学性能的影响[J].中国有色金属学报,2019,29(5):964-971.LI Pei,GAO Ting,KOU Wen-juan,et al. Effect of nucleation and α ofω-assisted α phase on the mechanical properties of Ti-1300alloy during aging[J]. The Chinese Journal of Nonferrous Metals,2019,29(5):964-971.

[24]葛鹏,周伟,赵永庆.热处理制度对Ti-1300合金组织和力学性能的影响[J].中国有色金属学报,2010,20(1):1068-1072.GE Peng,ZHOU Wei,ZHAO Yong-qing. Influence of heat treatment on microstructure and mechanical properties of Ti-1300 alloy[J]. The Chinese Journal of Nonferrous Metals,2010,20(1):1068-1072.

[25]边洪岩,雷旻,万明攀. Ti-1300合金在热处理过程中的晶粒长大行为研究[J].热加工工艺,2014,43(6):69-71.BIAN Hong-yan,LEI Min,WAN Ming-pan. Study on grain growth behavior of Ti-1300 alloy during heat treatment[J]. Hot Working Technology,2014,43(6):69-71.

[26] Yasnikov I S,Vinogradov A,Estrin Y. Revisiting the Considère criterion from the viewpoint of dislocation theory fundamentals[J].Scripta Materialia,2014,76:37-40.

[27] Havner K S. On the onset of necking in the tensile test[J]. International Journal of Plasticity,2004,20(4/5):965-978.

[28]朱宝辉,胡晓晨,吴孟海,等. TC1钛合金精锻棒材的拉伸性能及断口形貌[J].中国有色金属学报,2010,20(1):144-147.ZHU Bao-hui,HU Xiao-chen,WU Meng-hai,et al. Tensile properties and fracture analysis of TC1 titanium alloy precision forged bars[J]. The Chinese Journal of Nonferrous Metals,2010,20(1):144-147.

[29] Zhu W,Lei J,Su B,et al. The interdependence of microstructure strength and fracture toughness in a novel β titanium alloy Ti-5Al-4Zr-8Mo-7V[J]. Materials Science and Engineering A,2020,782(15):139248-139261.

基本信息:

DOI:10.13289/j.issn.1009-6264.2024-0370

中图分类号:TG146.23;TG156.9

引用信息:

[1]邢浩洲,刘乐梁,刘继雄等.单相区短时固溶及时效处理对亚稳β钛合金组织和拉伸性能的影响[J].材料热处理学报,2025,46(06):61-69.DOI:10.13289/j.issn.1009-6264.2024-0370.

基金信息:

检 索 高级检索

引用

GB/T 7714-2015 格式引文
MLA格式引文
APA格式引文