南京工程学院材料科学与工程学院;江苏省先进结构材料与应用技术重点实验室;南京中盛铁路车辆配件有限公司;
对粉末冶金(PM)含铜钛合金进行了退火处理,利用X射线衍射仪(XRD)、光学显微镜(OM)、扫描电镜(SEM)、显微硬度计、纳米压痕仪及摩擦磨损试验机等研究了不同冷却速下合金显微组织、硬度及耐磨性能的演变规律。结果表明:α+β两相区退火能够消除粉末冶金样品中有害的富铜相;提高冷却速度可以抑制初生α相粗化,并细化先共析α相与共析组织片层,显著提升合金的力学和摩擦性能;经水冷处理后的样品表现出较佳的综合性能,其显微硬度和纳米硬度分别达到368 HV0.1和4.2 GPa,摩擦系数及磨损率分别为0.58和2.36×10-13 mm~3/(N·m)。
38 | 0 | 8 |
下载次数 | 被引频次 | 阅读次数 |
[1] 杨奇,刘会群,檀雯,等.新型医用钛合金Ti7Nb10Mo的时效硬化行为[J].材料热处理学报,2018,39(2):44-48.YANG Qi,LIU Hui-qun,TAN Wen,et al.Age-hardening behavior of new Ti7Nb10Mo titanium alloy for biomedical application[J].Transactions of Materials and Heat Treatment,2018,39(2):44-48.
[2] Liu X T,Chen S Y,Tsoi J K H,et al.Binary titanium alloys as dental implant materials-a review[J].Regenerative Biomaterials,2017,4(5):315-323.
[3] 申勇,刘时璋.医用含铜钛合金抗菌性能的研究与进展[J].中国组织工程研究,2023,27(21):3430-3437.SHEN Yong,LIU Shi-zhang.Research progress on antibacterial properties of medical copper-containing titanium alloys[J].Chinese Journal of Tissue Engineering Research,2023,27(21):3430-3437.
[4] Kikuchi M,Takahashi M,Okuno O.Elastic moduli of cast Ti-Au,Ti-Ag,and Ti-Cu alloys[J].Dental Materials,2006,22(7):641-646.
[5] Cui S S,Liu S,Nie J J,et al.Design and preparation of a biomedical titanium alloy with low elastic modulus and high antibacterial property based on Ti-Mo-Ag system[J].Journal of Alloys and Compounds,2022,908:164639.
[6] Zhang E L,Zhao X T,Hu J L,et al.Antibacterial metals and alloys for potential biomedical implants[J].Bioactive Materials,2021,6(8):2569-2612.
[7] Zhang S Y,Yu Y C,Wang H,et al.Study on mechanical behavior of Cu-bearing antibacterial titanium alloy implant[J].Journal of the Mechanical Behavior of Biomedical Materials,2022,125:104926.
[8] Zhang E L,Zheng L L,Liu J,et al.Influence of Cu content on the cell biocompatibility of Ti-Cu sintered alloys[J].Materials Science and Engineering C,2015,46:148-157.
[9] Ma Z,Ren L,Liu R,et al.Effect of heat treatment on Cu distribution,antibacterial performance and cytotoxicity of Ti-6Al-4V-5Cu alloy[J].Journal of Materials Science and Technology,2015,31:723.
[10] Kolawole S K,Ren L,Siddiqui M A,et al.Optimized mechanical properties,corrosion resistance and bactericidal ability of Ti-15Zr-xCu biomedical alloys during aging treatment[J].Acta Metallurgica Sinica (English Letters),2022,35:304-316.
[11] Wang J W,Zhang S Y,Sun Z Q,et al.Optimization of mechanical property,antibacterial property and corrosion resistance of Ti-Cu alloy for dental implant[J].Journal of Materials Science and Technology,2019,35(10):2336-2344.
[12] 何斌斌,邹海燕,辛程,等.Cu含量对生物医用Ti-Cu合金抑菌表现及性能的影响[J].中国有色金属学报,2023,33(8):2536-2548.HE Bin-bin,ZOU Hai-yan,XIN Cheng,et al.Effects of Cu content on antibacterial performance and properties of biomedical Ti-xCu alloys[J].The Chinese Journal of Nonferrous Metals,2023,33(8):2536-2548.
[13] Chen Y N,Huo Y Z,Zhao Y P,et al.Effect of Cu content on the semi-solid formability and mechanical properties of Ti-Cu alloys[J].Rare Metal Materials and Engineering,2016,45(6):1406-1412.
[14] Liu J,Li F B,Liu C,et al.Effect of Cu content on the antibacterial activity of titanium-copper sintered alloys[J].Materials Science and Engineering C,2014,35:392-400.
[15] Zhang E L,Wang X Y,Chen M,et al.Effect of the existing form of Cu element on the mechanical properties,bio-corrosion and antibacterial properties of Ti-Cu alloys for biomedical application[J].Materials Science and Engineering C,2016,69:1210-1221.
[16] Alshammari Y,Yang F,Bolzoni L.Low-cost powder metallurgy Ti-Cu alloys as a potential antibacterial material[J].Journal of the Mechanical Behavior of Biomedical Materials,2019,95:232-239.
[17] Xu W,Hou C J,Mao Y X,et al.Characteristics of novel Ti-10Mo-xCu alloy by powder metallurgy for potential biomedical implant applications[J].Bioactive Materials,2020,5(3):659-666.
[18] Luo R D,Yuan Y X,Ren J K,et al.Novel function-structure-integrated Ti-Mo-Cu alloy combined with excellent antibacterial properties and mechanical compatibility as implant application[J].Journal of Alloys and Compounds,2023,945:169323.
[19] Bao M M,Liu Y,Wang X Y,et al.Optimization of mechanical properties,biocorrosion properties and antibacterial properties of wrought Ti-3Cu alloy by heat treatment[J].Bioactive Materials,2018,3(1):28-38.
[20] Peng C,Liu Y,Liu H,et al.Optimization of annealing treatment and comprehensive properties of Cu-containing Ti6Al4V-xCu alloys[J].Journal of Materials Science and Technology,2019,35:2121-2131.
[21] 彭聪,张书源,任玲,等.冷却速率对含Cu钛合金显微组织和性能的影响[J].金属学报,2017,53(10):1377-1384.PENG Cong,ZHANG Shu-yuan,REN Ling,et al.Effect of cooling rate on microstructure and properties of a Cu-containing titanium alloy[J].Acta Metallurgica Sinica,2017,53(10):1377-1384.
[22] 罗健,刘秀波,陆小龙,等.Ti-6Al-4V钛合金表面激光熔覆自润滑耐磨涂层的高温稳定性[J].材料热处理学报,2015,36(3):194-199.LUO Jian,LIU Xiu-bo,LU Xiao-long,et al.High-temperature stability of self-lubricating wear resistant coating on Ti-6Al-4V alloy prepared by laser cladding[J].Transactions of Materials and Heat Treatment,2015,36(3):194-199.
[23] Tao X W,Xia J Q,Xu Y T,et al.Role of Cu content in microstructure,mechanical,corrosion,tribological and antibacterial behavior of spark plasma sintered Ti-B-xCu alloys for dental application[J].Vacuum,2024,222:113085.
[24] 卢颖,汤海波,王华明.激光成形TC4 钛合金亚临界退火组织及形成机制[J].材料热处理学报,2012,33(11):58-62.LU Ying,TANG Hai-bo,WANG Hua-ming.Microstructure and forming mechanism of a laser melting deposited TC4 titanium alloy after sub-critical annealing[J].Transactions of Materials and Heat Treatment,2012,33(11):58-62.
[25] Zhang D Y,Qiu D,Gibson M A,et al.Additive manufacturing of ultrafine-grained high-strength titanium alloys[J].Nature,2019,576:91-95.
[26] Cardoso F F,Cremasco A,Contieri R J,et al.Hexagonal martensite decomposition and phase precipitation in Ti-Cu alloys[J].Materials & Design,2011,32(8/9):4608-4613.
[27] 杜子杰,李文渊,刘建荣,等.CMT增材制造TC4-DT合金组织均匀性与力学性能一致性研究[J].金属学报,2020,56(12):1667-1680.DU Zi-jie,LI Wen-yuan,LIU Jian-rong,et al.Study on the uniformity of structure and mechanical properties of TC4-DT alloy deposited by CMT process[J].Acta Metallurgica Sinica,2020,56(12):1667-1680.
[28] Tao X W,Yao Z J,Zhang S S,et al.Investigation on microstructure,mechanical and tribological properties of in-situ (TiB+TiC)/Ti composite during the electron beam surface melting[J].Surface and Coatings Technology,2018,701:841-849.
[29] Attar H,Ehtemam-Haghighi S,Kent D,et al.Nanoindentation and wear properties of Ti and Ti-TiB composite materials produced by selective laser melting[J].Materials Science and Engineering A,2017,688:20-26.
[30] 李明,刘洋,徐怀忠,等.固溶处理温度对激光选区熔化成型Ti-6Al-4V钛合金摩擦磨损性能的影响[J].材料热处理学报,2019,40(8):39-49.LI Ming,LIU Yang,XU Huai-zhong,et al.Effect of solid solution treatment temperature on friction and wear properties of Ti-6Al-4V titanium alloy prepared by selective laser melting[J].Transactions of Materials and Heat Treatment,2019,40(8):39-49.
[31] 迮颖,朱梦婷,孙世豪,等.电子束重熔对熔丝沉积钛合金表面组织及性能的影响[J].表面技术,2023,52(4):164-171.ZE Yin,ZHU Meng-ting,SUN Shi-hao,et al.Effect of electron beam surface remelting on surface microstructure and properties of wire-feed additive manufactured titanium alloy[J].Surface Technology,2023,52(4):164-171.
[32] 成前前,万善宏,易戈文,等.Ti6Al4V表面激光改性层重熔处理的微观组织特征及宽温域摩擦学性能研究[J].摩擦学学报,2022,42(3):470-481.CHEN Qian-qian,WAN Shan-hong,YI Ge-wen,et al.Study on the microstructure characteristics and wide temperature range tribological properties of Ti6Al4V laser modified surface by remelted[J].Tribology,2022,42(3):470-481.
[33] Zhang Q,Sun W B,Xu S L,et al.Nano-TiB whiskers reinforced Ti-6Al-4 V matrix composite fabricated by direct laser deposition:Microstructure and mechanical properties[J].Journal of Alloys and Compounds,2022,922:166171.
基本信息:
DOI:10.13289/j.issn.1009-6264.2024-0299
中图分类号:TG156.2;TG146.23;TF125.22
引用信息:
[1]陶学伟,吴则路,唐护洋等.退火冷却速度对粉末冶金含铜钛合金组织与性能的影响[J].材料热处理学报,2025,46(05):65-73.DOI:10.13289/j.issn.1009-6264.2024-0299.
基金信息:
国家自然科学基金(52005245); 江苏省重点研发计划(BE2021020); 江苏省大学生科技创新项目(202311276036Z)