nav emailalert searchbtn searchbox tablepage yinyongbenwen piczone journalimg journalInfo journalinfonormal searchdiv qikanlogo popupnotification paper paperNew
2025, 10, v.46 200-212
EH690高强钢焊接接头热影响区粗晶区微观组织的疲劳性能
基金项目(Foundation): 国家自然科学基金(52208211,52401343)
邮箱(Email): cchen013@163.com;
DOI: 10.13289/j.issn.1009-6264.2024-0539
摘要:

基于EH690高强钢焊接接头焊接过程中记录的热影响区温度历史曲线,采用Gleeble-3500热模拟试验机模拟再现相应焊接热循环,制备焊趾处热影响区粗晶区(CGHAZ)微观组织试样。峰值温度设置为1350℃,冷却时间t8/5设置为10、20和30 s。利用光学显微镜和扫描电镜观察不同冷却时间试样的微观组织,并采用疲劳试验测试EH690高强钢焊接接头热影响区粗晶区(CGHAZ)微观组织的疲劳性能。结果表明:焊接热模拟得到的粗晶区微观组织与EH690高强钢焊接接头焊趾处粗晶区的组织一致,为典型的板条状马氏体组织;随着冷却时间的增加,板条马氏体减少,奥氏体转变为贝氏体组织,强度和硬度值降低;冷却时间t8/5为10和30 s的CGHAZ微观组织试样的疲劳性能优于母材;对于冷却时间t8/5为20 s的CGHAZ微观组织试样,由于上贝氏体组织的产生,致使其疲劳性能降低,疲劳寿命低于母材试样。美国规范和欧洲规范均能较为保守地评估EH690高强钢及其CGHAZ微观组织的疲劳性能。

Abstract:

Based on the temperature history curves of the heat affected zone(HAZ) recorded during the welding of EH690 high-strength steel welded joints, the Gleeble-3500 thermal simulation test machine was used to simulate and reproduce the corresponding welding thermal cycle, and microstructure samples of the coarse-grain heat affected zone(CGHAZ) at the weld toe were prepared. The peak temperature was set to 1350 ℃, and the cooling time t8/5 was set to 10 s, 20 s and 30 s. The microstructure of the samples with different cooling time was observed using an optical microscope and scanning electron microscopy, and the fatigue performance of the microstructure in the CGHAZ of EH690 high-strength steel welded joints was tested using fatigue tests. The results show that the microstructure of the coarse-grain zone obtained by welding thermal simulation is consistent with that of the coarse-grain zone at the weld toe of the EH690 high-strength steel, exhibiting a typical lath martensite structure. With the increase of cooling time, the lath martensite content decreases, austenite transforms into bainite, and both strength and hardness decrease. The fatigue performance of CGHAZ microstructure specimens with cooling time t8/5 of 10 s and 30 s is superior to that of the base metal. However, for the CGHAZ microstructure sample with a cooling time t8/5 of 20 s, the formation of upper bainite structure leads to reduced fatigue performance and a lower fatigue life compared to the base metal. Both American and European standards can conservatively evaluate the fatigue performance of the EH690 high-strength steel and its CGHAZ microstructure.

参考文献

[1] 刘振宇,唐帅,陈俊,等.海洋平台用钢的研发生产现状与发展趋势[J].鞍钢技术,2015(1):1-7.LIU Zhen-yu,TANG Shuai,CHEN Jun,et al.Latest progress on development and production of steels for offshore platform and their development tendency[J].Angang Technology,2015(1):1-7.

[2] 宗云,刘春明.低碳高强度海洋平台用钢的研究应用进展[J].齐鲁工业大学学报(自然科学版),2017,31(2):31-34.ZONG Yun,LIU Chun-ming.Research progress and application of low-carbon high-strength offshore platform steel[J].Journal of Qilu University of Technology (Natural Science Edition),2017,31(2):31-34.

[3] 王超逸,李文斌,金耀辉,等.EH690超高强海洋装备用钢盐雾腐蚀前后疲劳性能研究[J].鞍钢技术,2023(6):89-94.WANG Chao-yi,LI Wen-bin,JIN Yao-hui,et al.Study on fatigue properties of EH690 ultra-high strength steel for marine equipment before and after salt spray corrosion testing[J].Angang Technology,2023(6):89-94.

[4] 吴涛,吴东召,叶建军,等.自升式海洋平台齿条用177.8 mm厚度钢板的研制开发[J].宽厚板,2015,21(3):1-4.WU Tao,WU Dong-zhao,YE Jian-jun,et al.Development of 177.8 mm thickness steel plate for gear rack of jack-up offshore platform[J].Wide and Heavy Plate,2015,21(3):1-4.

[5] 刘华祥,袁玉杰,曾靖波,等.导管架平台用钢现状及展望[J].中国海上油气,2020,32(4):164-170.LlU Hua-xiang,YUAN Yu-jie,ZENG Jing-bo,et al.Application state and prospect of steels for jacket platform[J].China Offshore Oil and Gas,2020,32(4):164-170.

[6] Wang L,Qian X D,Feng L Y.Effect of welding residual stresses on the fatigue life assessment of welded connections[J].International Journal of Fatigue,2024,189:108570.

[7] 何余良,钱昕,叶肖伟,等.考虑残余应力的焊接节点疲劳寿命有限元分析[J].土木与环境工程学报(中英文),2022,44(3):54-61.HE Yu-liang,QIAN Xin,YE Xiao-wei,et al.Finite element analysis of fatigue life of welded joint considering residual stress[J].Journal of Civil and Environmental Engineering,2022,44(3):54-61.

[8] Xu S X,Chen J X,Shen W,et al.Fatigue strength evaluation of 5059 aluminum alloy welded joints considering welding deformation and residual stress[J].International Journal of Fatigue,2022,162:106988.

[9] Yosri A,Zayed A S,Saad-Eldeen S,et al.Influence of stress concentration on fatigue life of corroded specimens under uniaxial cyclic loading[J].Alexandria Engineering Journal,2021,60(6):5205-5216.

[10] 张文钺.焊接冶金学基本原理[M].北京:机械工业出版社,2017.

[11] 毛卫民,赵新兵.金属的再结晶与晶粒长大[M].北京:冶金工业出版社,1994.

[12] Wang B S,Chen N N,Cai Y,et al.Effect of microstructure on impact toughness and fatigue performance in coarse-grained heat-affected zone of bainitic steel welds[J].Journal of Materials Engineering and Performance,2023,32(8):3678-3689.

[13] Maddox S J.Fatigue crack propagation data obtained from parent plate,weld metal and HAZ in structural steels[J].Welding Research International,1974,4(1):36-60.

[14] Lee H K,Kim K S,Kim C M.Fracture resistance of a steel weld joint under fatigue loading[J].Engineering Fracture Mechanics,2000,4(1):403-419.

[15] Suh C H,Lee R G,Oh S K,et al.Effect of welding heat input on fatigue life of quenched boron steel and FB steel lap joint[J].Journal of Mechanical Science and Technology,2011,25(7):1727-1735.

[16] Yamaguchi N,Lemoine G,Shiozaki T,et al.Effect of microstructures on notch fatigue properties in ultra-high strength steel sheet welded joint[J].International Journal of Fatigue,2019,129:105233.

[17] Vuherer T,Maruscak P O,Samardzic I.Behaviour of coarse grain heat affected zone (HAZ) during cycle loading[J].Metalurgija,2012,51(3):301-304.

[18] Kim S,Kang D,Kim T W,et al.Fatigue crack growth behavior of the simulated HAZ of 800 MPa grade high-performance steel[J].Materials Science and Engineering A,2011.528(6):2331-2338.

[19] Devaney R J,O’Donoghue P E,Leen S B.Effect of welding on microstructure and mechanical response of X100Q bainitic steel through nanoindentation,tensile,cyclic plasticity and fatigue characterization[J].Materials Science and Engineering A,2021,804:140728.

[20] 沈新康,陈成,邵永波,等.EH690高强钢的CCT曲线测定与相变动力学分析[J].材料热处理学报,2024,45(11):132-145.SHEN Xin-kang,CHEN Cheng,SHAO Yong-bo,et al.Determination of continuous cooling transformation curves and phase transformation kinetics analysis of EH690 high-strength steel[J].Transactions of Materials and Heat Treatment,2024,45(11):132-145.

[21] GB 50661—2011.钢结构焊接规范[S].北京:中国建筑工业出版社,2012.

[22] GB/T 3075—2021.金属材料疲劳试验轴向力控制方法[S].北京:中国标准出版社,2021.

[23] GB/T 27552—2021.金属材料焊缝破坏性试验焊接接头显微硬度试验[S].北京:中国标准出版社,2021.

[24] GB/T 4340.1—2009.金属材料维氏硬度试验第1部分:试验方法[S].北京:中国标准出版社,2010.

[25] AISC/AISC360—10.Specification for Structural Steel Buildings[S].Chicago:American Institute of Steel Constrction,2010.

[26] BS EN 1993-1—9:2005.Eurocode 3:Design of steel structures-Part 1-9:Fatigue[S].London:British Standards Institution,2005.

基本信息:

DOI:10.13289/j.issn.1009-6264.2024-0539

中图分类号:TG407

引用信息:

[1]刘培灿,陈成,邵永波,等.EH690高强钢焊接接头热影响区粗晶区微观组织的疲劳性能[J].材料热处理学报,2025,46(10):200-212.DOI:10.13289/j.issn.1009-6264.2024-0539.

基金信息:

国家自然科学基金(52208211,52401343)

检 索 高级检索

引用

GB/T 7714-2015 格式引文
MLA格式引文
APA格式引文