nav emailalert searchbtn searchbox tablepage yinyongbenwen piczone journalimg journalInfo searchdiv qikanlogo popupnotification paper paperNew
2025, 07, v.46 55-63
动态压缩下Co35Cr25Fe20Ni20高熵合金的硬化与非晶化
基金项目(Foundation): 国家自然科学基金(52125405,52471148,52071278); 国家重点研发计划(2018YFA0703603)
邮箱(Email): sxliang@ysu.edu.cn;mz550509@ysu.edu.cn;
DOI: 10.13289/j.issn.1009-6264.2025-zt09
摘要:

固态非晶化是结构转变的一个重要特征,在极端条件下会明显影响金属材料的性能。本研究以具有低层错能(SFE)的Co35Cr25Fe20Ni20高熵合金为研究对象,探讨了其在不同应变速率动态压缩下的变形机理。结果表明:在高速变形过程中合金的层错(SFs)、变形孪晶、hcp相和非晶化被同时激活,而非晶化主要发生在高密度位错分布的剪切带附近,剪切带中存储的高密度位错使fcc基体的能量增加,超过了非晶相的能量,这种能量差异推动了非晶化过程;通过分子动力学模拟发现,非晶化过程与SFs、hcp相和位错密切相关,非晶化区域一部分由SFs和hcp转变,另一部分由位错密集剪切带转变,这些缺陷会导致自由能升高;反过来,非晶化也会像其他缺陷一样耗散所施加的应变能,为金属变形提供额外的强化和韧化机制,从而提高高熵合金在极端环境下的负载能力。上述发现有助于设计高性能高熵合金,并拓展其在极端条件下的应用前景。

Abstract:

Solid-state amorphization is an important characteristic of structural transformation, which can significantly affect the properties of metallic materials under extreme conditions. In this study, the deformation mechanism of Co35Cr25Fe20Ni20 high-entropy alloy with low stacking fault energy(SFE) under dynamic compression with different strain rates was investigated. The results show that during high-speed deformation, the stacking faults(SFs), deformation twins, hcp phases, and amorphization of the alloy are simultaneously activated, and amorphization mainly occurs near the shear band with high-density dislocation distribution. The high-density dislocations stored in the shear band increase the energy of the fcc matrix, exceeding that of the amorphous phase, this energy difference promotes the amorphization process. Through molecular dynamics simulations, it is found that the amorphization process is closely related to SFs, hcp phases, and dislocations. A part of the amorphization region is transformed by SFs and hcp, while another part is transformed by dislocation dense shear bands, these defects can lead to an increase in free energy. Conversely, amorphization also dissipates the applied strain energy like other defects, providing additional strengthening and toughening mechanisms for metal deformation, thereby improving the loading capacity of high-entropy alloys in extreme environments. The above findings contribute to the design of high-performance high-entropy alloys and expand their application prospects under extreme conditions.

参考文献

[1] Miracle D B,Senkov O N.A critical review of high entropy alloys and related concepts[J].Acta Materialia,2017,122:448-511.

[2] Liu L Q,Liu X J,Du Q,et al.Local chemical ordering and its impact on radiation damage behavior of multi-principal element alloys[J].Journal of Materials Science and Technology,2023,135:13-25.

[3] Zhang Y,Zuo T T,Tang Z,et al.Microstructures and properties of high-entropy alloys[J].Progress in Materials Science,2014,61:1-93.

[4] Ayyagari A,Hasannaeimi V,Grewal H S,et al.Corrosion,erosion and wear behavior of complex concentrated alloys:A review[J].Metals,2018,8(8):603.

[5] Xia S Q,Gao M C,Zhang Y.Abnormal temperature dependence of impact toughness in AlxCoCrFeNi system high entropy alloys[J].Materials Chemistry and Physics,2018,210(1):213-221.

[6] Gludovatz B,Hohenwarter A,Thurston K V S,et al.Exceptional damage-tolerance of a medium-entropy alloy CrCoNi at cryogenic temperatures[J].Nature Communications,2016,7:10602.

[7] Fu W J,Zheng W,Huang Y J,et al.Cryogenic mechanical behaviors of CrMnFeCoNi high-entropy alloy[J].Materials Science and Engineering A,2020,789:139579.

[8] Gludovatz B,Hohenwarter A,Catoor D,et al.A fracture-resistant high-entropyalloy for cryogenic applications[J].Science,2014,345(6201):1153-1158.

[9] Zhang Z,Mao M M,Wang J,et al.Nanoscale origins of the damage tolerance of the high-entropy alloy CrMnFeCoNi[J].Nature Communications,2015,6(1):10143.

[10] Gangireddy S,Gwalani B,Liu K,et al.Microstructures with extraordinary dynamic work hardening and strain rate sensitivity in Al0.3CoCrFeNi high entropy alloy[J].Materials Science and Engineering A,2018,734(12):42-50.

[11] He J Y,Wang Q,Zhang H.S,et al.Dynamic deformation behavior of a face-centered cubic FeCoNiCrMn high-entropy alloy[J].Science Bulletin,2018,63(6):362-368.

[12] Cao T Q,Zhang Q,Wang L,et al.Dynamic deformation behaviors and mechanisms of CoCrFeNi high-entropy alloys[J].Acta Materialia,2023,260(1):119343.

[13] Choudhuri D,Shukla S,Jannotti P A,et al.Characterization of as-cast microstructural heterogeneities and damage mechanisms in eutectic AlCoCrFeNi2.1 high entropy alloy[J].Materials Characterization,2019,158:109955.

[14] Jiang W,Gao X Z,Guo Y Z,et al.Dynamic impact behavior and deformation mechanisms of Cr26Mn20Fe20Co20Ni14 high-entropy alloy[J].Materials Science and Engineering A,2021,824(8):141858.

[15] Zhao S T,Li Z H,Zhu C Y,et al.Amorphization in extreme deformation of the CrMnFeCoNi high-entropy alloy[J].Science Advance,2021,7(5):eabb3108.

[16] Plimpton S.Fast parallel algorithms for short-range molecular dynamics[J].Journal of Computational Physics,1995,117(1):1-19.

[17] Wang J,Kwon H,Kim H S,et al.A neural network model for high entropy alloy design[J].npj Computational Materials,2023,9:60.

[18] Stukowski A,Bulatov V V,Arsenlis A.Automated identification and indexing of dislocations in crystal interfaces[J].Modelling and Simulation in Materials Science and Engineering,2012,20:085007.

[19] Ming K S,Lu W J,Li Z M,et al.Amorphous bands induced by low temperature tension in a non-equiatomic CrMnFeCoNi alloy[J].Acta Materialia,2020,188(15):354-365.

[20] Shi Z L,Liu Y Z,Zhang H R,et al.Synergistic strength-ductility enhancement of CoCrFeNi high-entropy alloys with regulated Co/Cr atomic ratios[J].Materials Science and Engineering A,2024,912:146995.

[21] Wang H,Chen D,An X C,et al.Deformation-induced crystalline-to-amorphous phase transformation in a CrMnFeCoNi high-entropy alloy[J].Science Advance,2021,7(14):3105.

[22] Han S,Zhao L,Jiang Q,et al.Deformation-induced localized solid-state amorphization in nanocrystalline nickel[J].Scientific Reports,2012,2:493.

[23] Huang J Y,Zhu Y T,Liao X Z,et al.Amorphization of TiNi induced by high-pressure torsion[J].Philosophical Magazine Letters,2003,84(3):183-190.

[24] Du X J,Pu G,Li J,et al.Microstructural evolution and radiation resistance of amorphous TiTaNbZr multi-principal elements alloy induced by Au ion irradiation at elevated temperatures[J].Journal of Alloys and Compounds,2024,1008(15):176444.

[25] Deng J G,Zhang W,Zhou M Y,et al.Surface morphology evolution,microstructural response and mechanical property variation of Au-ion irradiated CrNbZrMoV,TiCrZrMoV,TiNbCrMoV,TiNbZrCrV and TiNbZrMoCr high-entropy alloy coatings[J].Journal of Nuclear Materials,2025,603:155430.

[26] Wu W Q,Ni S,Liu Y,et al.Amorphization at twin-twin intersected region in FeCoCrNi high-entropy alloy subjected to high-pressure torsion[J].Materials Characterization,2017,127:111-115.

[27] Straumal B B,Mazilkin A A,Protasova S G,et al.Amorphization of crystalline phases in the Nd-Fe-B alloy driven by the high-pressure torsion[J].Materials Letters,2015,161(15):735-739.

[28] Meyers M A,Xu Y B,Xue Q,et al.Amorphization of crystalline phases in the Nd-Fe-B alloy driven by the high-pressure torsion,Microstructural evolution in adiabatic shear localization in stainless steel[J].Acta Materialia,2003,51(5):1307-1325.

[29] Hua P,Wang B,Yu C,et al.Shear-induced amorphization in nanocrystalline NiTi micropillars under large plastic deformation[J].Acta Materialia,2022,241:118358.

[30] Mohapatra S K,Ranjan V,Tripathy S.Study of severe plastic deformations of metallic materials:A move towards Amorphization[J].Materials Today:Proceedings,2022,56:735-741.

[31] Johnson W L.Thermodynamic and kinetic aspects of the crystal to glass transformation in metallic materials[J].Progress in Materials Science,1986,30(2):81-134.

基本信息:

DOI:10.13289/j.issn.1009-6264.2025-zt09

中图分类号:TG139

引用信息:

[1]施志林,张浩然,温永清等.动态压缩下Co_(35)Cr_(25)Fe_(20)Ni_(20)高熵合金的硬化与非晶化[J].材料热处理学报,2025,46(07):55-63.DOI:10.13289/j.issn.1009-6264.2025-zt09.

基金信息:

国家自然科学基金(52125405,52471148,52071278); 国家重点研发计划(2018YFA0703603)

检 索 高级检索

引用

GB/T 7714-2015 格式引文
MLA格式引文
APA格式引文