nav emailalert searchbtn searchbox tablepage yinyongbenwen piczone journalimg journalInfo searchdiv qikanlogo popupnotification paper paperNew
2025, 01, v.46 72-80
Fe-2.3%Si无取向硅钢连续退火过程中的组织演变与再结晶动力学
基金项目(Foundation): 河北省创新能力提升计划项目(23561002D)
邮箱(Email): ntzzh2279@163.com;
DOI: 10.13289/j.issn.1009-6264.2024-0114
摘要:

退火是无取向硅钢热处理过程中的关键工序之一。针对冷轧变形量85%的Fe-2.3%Si无取向硅钢,采用相场模拟和实验分析相结合的方法,研究了硅钢在连续升温过程中的微观组织演化以及连续升温再结晶转变动力学曲线。结果表明:平均晶粒尺寸和再结晶特征温度的相场模拟结果与实验结果基本相同,表明本文相场模型参数设置较为合理。采用相场模拟,确定了连续退火的升温速率由10℃/s增大至35℃/s时,硅钢的再结晶开始温度由855℃提高至942℃,再结晶结束温度由1035℃提高至1157℃。获得了卷取速度对再结晶晶粒尺寸的影响规律和关系式,可为无取向硅钢连续退火工艺参数优化提供参考。

Abstract:

Annealing is one of the key processes in the heat treatment of non-oriented silicon steel. The microstructure evolution and recrystallization kinetics curve of Fe-2. 3% Si non-oriented silicon steel with a cold rolling deformation of 85% during continuous heating were investigated by phase field simulation and experimental analysis. The results show that the phase field simulation results of average grain size and recrystallization characteristic temperature are basically consistent with the experimental results, indicating that the parameter settings of the phase field model in this paper are relatively reasonable. By using phase field simulation, it is determined that when the heating rate of continuous annealing increases from 10 ℃/s to 35 ℃/s, the starting temperature of recrystallization in the silicon steel increases from 855 ℃ to 942 ℃, and the ending temperature of recrystallization increases from 1035 ℃ to 1157 ℃. The influence law and relationship formula of coiling speed on recrystallized grain size have been obtained, which can provide reference for optimizing the continuous annealing process parameters of non-oriented silicon steel.

参考文献

[1]耿京京,于浩,范勇斐.常化温度对热轧无取向硅钢组织与磁性能的影响[J].材料热处理学报,2013,34(S1):93-96.GENG Jing-jing,YU Hao,FAN Yong-fei. Effect of normalizing temperature on texture and magnetic property of hot-rolled nonoriented silicon steel[J]. Transactions of Materials and Heat Treatment,2013,34(S1):93-96.

[2]朱诚意,鲍远凯,汪勇,等.新能源汽车驱动电机用无取向硅钢应用现状和性能调控研究进展[J].材料导报,2021,35(23):23089-23096.ZHU Cheng-yi,BAO Yuan-kai,WANG Yong,et al. Research progress on application status and property control of non-oriented silicon steel for traction motor of new energy vehicles[J]. Materials Reports,2021,35(23):23089-23096.

[3]樊立峰,秦美美,岳尔斌,等.新能源汽车对无取向硅钢的技术挑战[J].材料导报,2021,35(15):15183-15188.FAN Li-feng,QIN Mei-mei,YUE Er-bin,et al. Technological challenges of new energy vehicle to non-oriented silicon steel[J].Materials Reports,2021,35(15):15183-15188.

[4]安治国,侯金海,刘宏强,等.低铁损高磁通密度无取向硅钢的应用与生产技术进展[J].热加工工艺,2013,42(14):6-7.AN Zhi-guo,HOU Jin-hai,LIU Hong-qiang,et al. Application and development of high magnetic flux density low iron loss nonoriented silicon steel[J]. Hot Working Technology,2013,42(14):6-7.

[5] Song X, Rettenmayr M. Modelling study on recrystallization, recovery and their temperature dependence in inhomogeneously deformed materials[J]. Materials Science and Engineering A,2002,332(1/2):153-160.

[6] Walasek T A. Experimental verification of monte carlo recrystallization model[J]. Journal of Materials Processing Technology,2004,157:262-267.

[7] Chun Y B,Semiatin S L,Hwang S K. Monte carlo modeling of microstructure evolution during the static recrystallization of coldrolled,commercial-purity titanium[J]. Acta Materialia,2006,54(14):3673-3689.

[8]卢瑜,张立文,邓小虎,等.纯铜动态再结晶过程的元胞自动机模拟[J].金属学报,2008,44(3):292-296.LU Yu,ZHANG Li-wen,DENG Xiao-hu,et al. Modeling dynamic recrystallization of pure copper using cellular automaton method[J]. Acta Metallurgica Sinica,2008,44(3):292-296.

[9] Ma X,Zheng C,Zhang X,et al. Microstructural depictions of austenite dynamic recrystallization in a low-carbon steel:A cellular automaton model[J]. Acta Metallurgica Sinica(English Letters),2016,29(12):1127-1135.

[10] Liss K D,Garbe U,Li H,et al. In situ observation of dynamic recrystallization in the bulk of zirconium alloy[J]. Advanced Engineering Materials,2010,11(8):637-640.

[11] Fan D N,Chen L Q. Computer simulation of grain growth using a continuum field model[J]. Acta Materialia,1997,45(2):611-622.

[12]高英俊,罗志荣,胡项英,等.相场方法模拟AZ31镁合金的静态再结晶过程[J].金属学报,2010,46(10):1161-1172.GAO Ying-jun,LUO Zhi-rong,HU Xiang-ying,et al. Phase field simulation of static recrystallization for AZ31 mg alloy[J]. Acta Metallurgica Sinica,2011,46(10):1161-1172.

[13] Takaki T, Hirouchi T, Hisakuni Y, et al. Multi-phase-field model to simulate microstructure evolutions during dynamic recrystallization[J]. Materials Transactions,2008,49(11):2559-2565.

[14] Takaki T,Yamanaka A,Higa Y,et al. Phase-field model during static recrystallization based on crystal-plasticity theory[J]. Journal of Computer-Aided Materials Design,2007,14:75-84.

[15] Muramatsu M, Tadano Y, Shizawa K. A phase-field simulation of nucleation from subgrain and grain growth in static recrystallization[J]. Materials Science Forum,2008,584-586:1045-1050.

[16] Yun P,Zhou H,Fu H,et al. A novel method to study recrystallization behavior:continuous heating stress relaxation[J]. Materials Characterization,2020,167:110500.

[17] Lan Y,Pinna C. Modelling the static recrystallisation texture of FCC metals using a phase field method[J]. Materials Science Forum,2012,715-716:739-744.

[18] Chen L Q,Khachaturyan A G. Computer simulation of structural transformations during precipitation of an ordered intermetallic phase[J]. Acta Metallurgica et Materialia,1991,39(11):2533-2551.

[19] Takaki T,Tomita Y. Static recrystallization simulations starting from predicted deformation microstructure by coupling multi-phasefield method and finite element method based on crystal plasticity[J]. International Journal of Mechanical Sciences,2010,52(2):320-328.

[20] Zheng C W,Xiao N M,Li D Z,et al. Microstructure prediction of the austenite recrystallization during multi-pass steel strip hot rolling:a cellular automaton modeling[J]. Computational Materials Science,2008,44(2):507-514.

[21] Güven?O,Bambach M,Hirt G. Coupling of crystal plasticity finite element and phase field methods for the prediction of SRX kinetics after hot working[J]. Steel Research International,2014,85(6):999-1009.

[22]于雷,罗海文.部分再结晶退火对无取向硅钢的磁性能与力学性能的影响[J].金属学报,2020,56(3):291-300.YU Lei,LUO Hai-wen. Effect of partial recrystallization annealing on magnetic properties and mechanical properties of non-oriented silicon steel[J]. Acta Metallurgica Sinica,2020,56(3):291-300.

[23]张小丽,冯晓伟,申勇峰. D6A钢在轧制过程中的强韧化机理[J].材料工程,2022,50(4):172-180.ZHANG Xiao-li,FENG Xiao-wei,SHEN Yong-feng. Toughening mechanism of D6A steel during rolling process[J]. Journal of Materials Engineering,2022,50(4):172-180.

[24] Liu Y,Fang X,Liu K,et al. Investigation on recrystallization behavior of Fe-2. 3 wt%Si alloy in continuous heating with three-point bending testing[J]. Steel Research International,2024,95:2300468.

[25]石文敏,杨光,吴章汉,等.退火加热速度对高牌号无取向硅钢组织、织构及磁性能的影响[J].材料热处理学报,2023,44(4):138-145.SHI Wen-min,YANG Guang,WU Zhang-han,et al. Effect of heating rate on microstructure,texture and magnetic properties of high grade non-oriented silicon steel during annealing[J]. Transactions of Materials and Heat Treatment,2023,44(4):138-145.

[26]王丽娜,何承绪,孟利,等.升温速率对冷轧超薄取向硅钢再结晶行为的影响[J].材料导报,2021,35(18):18170-18175.WANG Li-na,HE Cheng-xu,MENG Li,et al. Effect of heating rate on recrystallization behavior in cold-rolled ultra-thin grainoriented silicon steel[J]. Materials Reports,2021,35(18):18170-18175.

基本信息:

DOI:10.13289/j.issn.1009-6264.2024-0114

中图分类号:TG142.1;TG156.2

引用信息:

[1]刘开心,刘亚猛,李艳国等.Fe-2.3%Si无取向硅钢连续退火过程中的组织演变与再结晶动力学[J].材料热处理学报,2025,46(01):72-80.DOI:10.13289/j.issn.1009-6264.2024-0114.

基金信息:

河北省创新能力提升计划项目(23561002D)

检 索 高级检索

引用

GB/T 7714-2015 格式引文
MLA格式引文
APA格式引文