nav emailalert searchbtn searchbox tablepage yinyongbenwen piczone journalimg journalInfo searchdiv qikanlogo popupnotification paper paperNew
2022, 04, v.43;No.262 97-106
时效处理对Al0.25CrFeMn1.3Ni高熵合金显微组织演变及耐磨性的影响
基金项目(Foundation): 国家自然科学基金(51871172)
邮箱(Email):
DOI: 10.13289/j.issn.1009-6264.2021-0469
摘要:

采用真空磁悬浮炉熔炼了Al0.25CrFeMn1.3Ni高熵合金,利用场发射扫描电镜、X射线衍射和场发射电子探针显微分析等研究了不同温度时效处理对其显微组织及耐磨性能的影响。结果表明:铸态合金的组织由Cr-Mn-Fe-Ni FCC相基体、Al-Ni-Mn B2相粒状组织和Fe-Cr-Mn BCC相枝晶基体组成。时效处理后,枝晶基体由BCC相转变为σ(Fe-Cr)相,又因合金长时间保温出现软化,使得合金硬度随时效时间的增加先升高后降低,硬度均在时效10 h时达到峰值,随时效温度升高,合金峰值硬度降低。此外,合金表现出良好的耐磨性,磨损120 min后相较于316L不锈钢的磨损质量损失,铸态合金为其的11.9%,750℃时效10 h后合金的磨损质量损失最低,仅为其的5.7%。铸态合金以氧化磨损为主,伴随有粘着磨损和磨粒磨损,随时效温度的升高,合金磨损机理由以粘着磨损为主转变为以分层磨损为主。

Abstract:

Al0.25CrFeMn1.3Ni high-entropy alloy was smelted using a vacuum magnetic levitation furnace, and the effect of aging treatment at different temperatures on microstructure and wear resistance of the Al0.25CrFeMn1.3Ni high-entropy alloy was studied by means of field emission scanning electron microscopy, X-ray diffraction and field emission electron probe microanalysis. The results show that the microstructure of the as cast alloy is composed of Cr-Mn-Fe-Ni FCC phase matrix, Al-Ni-Mn B2 phase granular structure and Fe-Cr-Mn BCC phase dendrite matrix. After aging treatment, the dendrite matrix changes from BCC phase to σ(Fe-Cr) phase, and the alloy softens due to the long-term holding time, so that the hardness of the alloy first increases and then decreases with the increase of aging time. The hardness reaches the peak value when aging for 10 h, and the peak hardness of the alloy decreases with the increase of aging temperature. In addition, the alloy exhibits good wear resistance. After 120 min of wear, compared with 316 L stainless steel, the wear mass loss of the as cast alloy is 11.9% that of the 316 L stainless steel, and the wear mass loss of the alloy aged at 750 ℃ for 10 h is the lowest, which is only 5.7% that of the 316 L stainless steel. The wear mechanism of the as-cast alloy is mainly oxidized wear, accompanied by adhesive wear and abrasive wear. With the increase of aging temperature, the wear mechanism of the alloy changes from adhesive wear to delamination wear.

参考文献

[1] Yeh J W,Chen S K,Lin S J,et al.Nanostructured high-entropy alloys with multiple principal elements:Novel alloy design concepts and outcomes[J].Advanced Engineering Materials,2004,6(5):299-303.

[2] 赵红艳.高熵固溶体合金的相组成和力学性能研究[D].大连:大连理工大学,2015.ZHAO Hong-yan.The study of phase component and mechanical performance in solid solutions high entropy alloys[D].Dalian:Dalian University of Technology,2015.

[3] He J Y,Wang H,Huang H L,et al.A precipitation-hardened high-entropy alloy with outstanding tensile properties[J].Acta Materialia,2016,102:187-196.

[4] Qiu Y,Thomas S,Gibson M A,et al.Corrosion of high entropy alloys[J].Npj Materials Degradation,2017,1(1):299-303.

[5] Xiao J K,Hong T,Wu Y Q,et al.Microstructure and wear behavior of FeCoNiCrMn high entropy alloy coating deposited by plasma spraying[J].Surface and Coatings Technology,2020,385:125430.

[6] Victor G,Yurii I,Sergey K,et al.Modification of high-entropy alloy AlCoCrFeNi by electron beam treatment[J].Journal of Materials Research and Technology,2021,13:787-797.

[7] 王佳,何庆中.铝合金形变时效处理的分析和比较探讨[J].四川理工学院学报(自然科学版),2007,20(4):73-76.WANG Jia,HE Qing-zhong.Analysis and relative exploration on the thermo-mechanical aging of aluminum alloys[J].Journal of Sichuan University of Science and Engineering(Natural Science Edition),2007,20(4):73-76.

[8] Chen S T,Tang W Y,Kuo Y F,et al.Microstructure and properties of age-hardenable AlxCrFe1.5MnNi0.5 alloys[J].Materials Science and Engineering A,2010,527:5818-5825.

[9] Tsao L C,Chen C S,Chu C P.Age hardening reaction of the Al0.3CrFe1.5MnNi0.5 high entropy alloy[J].Materials and Design,2011,36:854-858.

[10] 陈橙.Al0.3CrFe1.5MnNix高熵合金组织与性能研究[D].南京:南京理工大学,2018.CHEN Cheng.Research on microstructure and properties of Al0.3CrFe1.5MnNix high entropy alloy[D].Nanjing:Nanjing University of Science and Technology,2018.

[11] Tsai M H,Yuan H,Cheng G M,et al.Significant hardening due to the formation of a sigma phase matrix in a high entropy alloy[J].Intermetallics,2013,33:81-86.

[12] Cai Y C,Zhu L S,Cui Y,et al.Influence of high-temperature condition on the microstructure and properties of FeCoCrNiAl0.3 and FeCoCrNiAl0.7 high-entropy alloy coatings[J].Surface Engineering,2021,37(2):179-187.

[13] Wang Y X,Yang Y J,Yang H J,et al.Microstructure and wear properties of nitrided AlCoCrFeNi high-entropy alloy[J].Materials Chemistry and Physics,2018,210:233-239.

[14] Du L M,Lan L W,Zhu S,et al.Effects of temperature on the tribological behavior of Al0.25CoCrFeNi high-entropy alloy[J].Journal of Materials Science and Technology,2019,35(5):917-925.

[15] 张璐,张勇.热处理和熔炼方式改变对AlCoCrFeNiTi0.2高熵合金的影响[J].稀有金属材料与工程,2021,50(1):263-270.ZHANG Lu,ZHANG Yong.Effect of heat treatment and melting method changing on AlCoCrFeNiTi0.2 high entropy alloy[J].Rare Metal Materials and Engineering,2021,50(1):263-270.

[16] Guo S,Liu C T.Phase stability in high entropy alloys:Formation of solid-solution phase or amorphous phase[J].Progress in Natural Science:Materials International,2011,21(6):433-446.

[17] Tsai M H,Tsai K Y,Tsai C W,et al.Criterion for sigma phase formation in Cr- and V-containing high-entropy alloys[J].Materials Research Letters,2013,1(4):207-212.

[18] Lin L J,Xian X,Zhong Z H,et al.A multi-phase CrMnFeCoNiAl0.75 high-entropy alloy with high strength at intermediate temperature[J].Intermetallics,2020,120:106744.

[19] Wang C,Li T H,Liao Y C,et al.Hardness and strength enhancements of CoCrFeMnNi high-entropy alloy with Nd doping[J].Materials Science and Engineering A,2019,764:138192.

[20] 张威威,李荣斌.多主元FeNiMnC0.75Alx高熵合金微观结构和力学性能的研究[J].有色金属材料与工程,2018,39(3):18-22.ZHANG Wei-wei,LI Rong-bin.Study of microstructure and mechanical properties of FeNiMnCr0.75Alx high-entropy alloys[J].Nonferrous Metal Materals and Engineering,2018,39(3):18-22.

[21] 余晓流.摩擦学与润滑技术[M].合肥:合肥工业大学出版社,2013.YU Xiao-liu.Tribology and Lubrication Technology[M].Hefei:Hefei University of Technology Press,2013.

[22] Cui Y,Shen J Q,Manladan S M,et al.Wear resistance of FeCoCrNiMnAlx high-entropy alloy coatings at high temperature[J].Applied Surface Science,2020,512:145736.

[23] Ye F X,Jiao Z P,Shuai Y,et al.Microbeam plasma arc remanufacturing:Effects of Al on microstructure,wear resistance,corrosion resistance and high temperature oxidation resistance of AlxCoCrFeMnNi high-entropy alloy cladding layer[J].Vacuum,2020,174:109178.

[24] Khruschov M M.Principles of abrasive wear[J].Wear,1974,28(1):69-88.

[25] Wu C L,Zhang S,Zhang C H,et al.Phase evolution and properties in laser surface alloying of FeCoCrAlCuNix high-entropy alloy on copper substrate[J].Surface and Coatings Technology,2017,315:368-376.

[26] Huang C,Zhang Y Z,Vilar R,et al.Dry sliding wear behavior of laser clad TiVCrAlSi high entropy alloy coatings on Ti-6Al-4V substrate[J].Materials and Design,2012,41:338-343.

基本信息:

DOI:10.13289/j.issn.1009-6264.2021-0469

中图分类号:TG139;TG156.92

引用信息:

[1]徐云峰,黄峰,张恒康等.时效处理对Al_(0.25)CrFeMn_(1.3)Ni高熵合金显微组织演变及耐磨性的影响[J],2022,43(04):97-106.DOI:10.13289/j.issn.1009-6264.2021-0469.

基金信息:

国家自然科学基金(51871172)

检 索 高级检索

引用

GB/T 7714-2015 格式引文
MLA格式引文
APA格式引文