北京理工大学材料学院;北京理工大学前沿交叉科学研究院;北京理工大学机械与车辆学院;
利用机器学习框架搭建材料研究设计平台对材料性能进行分析与预测,成为开发新型材料的重要手段。铝合金的导电率和强度往往是互斥的,导电率的提高,伴随着强度的降低。使用SVM、RF、ELM、BP和DNN五种机器学习方法建立6000系铝合金的导电率和强度的机器学习预测模型。发现以热力学数据和加工工艺为特征输入,在合金性能预测模型的构建方面表现出巨大潜力。并最终筛选出精确度高,泛化能力好的深度神经网络预测模型。经过与实验数据验证,证明了所提模型对于铝合金导电率、强度预报的可靠性。
542 | 2 | 72 |
下载次数 | 被引频次 | 阅读次数 |
[1] 谢建新,宿彦京,薛德祯,等.机器学习在材料研发中的应用[J].金属学报,2021,57(11):1343-1361.XIE Jian-xin,SU Yan-jing,XUE De-zhen,et al.Machine learning for materials research and development[J].Acta Metallurgica Sinica,2021,57(11):1343-1361.
[2] Butler K T,Davies D W,Cartwright H,et al.Machine learning for molecular and materials science[J].Nature,2018,559(7715):547-555.
[3] Wei J,Chu X,Sun X Y,et al.Machine learning in materials science[J].InfoMat,2019,1(3):338-358.
[4] Zhang Y,Ling C.A strategy to apply machine learning to small datasets in materials science[J].npj Computational Materials,2018,4(1):1-8.
[5] Schmidt J,Marques M R,Botti S,et al.Recent advances and applications of machine learning in solid-state materials science[J].npj Computational Materials,2019,5(1):1-36.
[6] Zhang H B,Fu H D,He X Q,et al.Dramatically enhanced combination of ultimate tensile strength and electric conductivity of alloys via machine learning screening[J].Acta Materialia,2020,200:803-810.
[7] Zhao Q,Yang H,Liu J,et al.Machine learning-assisted discovery of strong and conductive Cu alloys:Data mining from discarded experiments and physical features[J].Materials & Design,2021,197:109248.
[8] Chen Y,Tian Y,Zhou Y,et al.Machine learning assisted multi-objective optimization for materials processing parameters:A case study in Mg alloy[J].Journal of Alloys and Compounds,2020,844:156159.
[9] Yao Z F,Jia X,Yu J X,et al.Rapid accomplishment of strength/ductility synergy for additively manufactured Ti-6Al-4V facilitated by machine learning[J].Materials & Design,2023,225:111559.
[10] Li X,Zheng M,Yang X,et al.A property-oriented design strategy of high-strength ductile RAFM steels based on machine learning[J].Materials Science and Engineering A,2022,840:142891.
[11] Dey S,Sultana N,Kaiser S,et al.Computational intelligence based design of age-hardenable aluminum alloys for different temperature regimes[J].Materials and Design,2016,92:522-534.
[12] 贾艳军,杨亚军,袁红梅.铝合金导线在我国的应用及发展[J].有色金属加工,2017,46(3):9-10.JIA Yan-jun,YANG Ya-jun,YUAN Hong-mei.Application and development of aluminum alloy conductor in China[J].Nonferrous Metals Processing,2017,46(3):9-10.
[13] Rhee H,Whittington W R,Oppedal A L,et al.Mechanical properties of novel aluminum metal matrix metallic composites:Application to overhead conductors[J].Materials & Design,2015,88:16-21.
[14] 吴振江.铝合金导体应用发展历程及现状[J].有色金属材料与工程,2018,39(4):42-48.WU Zhen-jiang.Development and situation of aluminum alloy conductor[J].Nonferrous Metal Materials and Engineering,2018,39(4):42-48.
[15] Wang C,Fu H,Jiang L,et al.A property-oriented design strategy for high performance copper alloys via machine learning[J].npj Computational Materials,2019,5(1):1-8.
[16] Zhang J,Ma M,Shen F,et al.Influence of deformation and annealing on electrical conductivity,mechanical properties and texture of Al-Mg-Si alloy cables[J].Materials Science and Engineering A,2018,710:27-37.
[17] Khangholi S N,Javidani M,Maltais A,et al.Review on recent progress in Al-Mg-Si 6xxx conductor alloys[J].Journal of Materials Research,2022,37(3):670-691.
[18] Kamil M,Zbigniew P,Witold C,et al.Enhanced strength and electrical conductivity of ultrafine-grained Al-Mg-Si alloy processed by hydrostatic extrusion[J].Materials Characterization,2018,135:104-114.
[19] Zheng Q J,Jiang H X,He J,et al.Effect of micro-alloying La on precipitation behavior,mechanical properties and electrical conductivity of Al-Mg-Si alloys[J].Science China Technological Sciences,2021,64(9):2012-2022.
[20] Khangholi S N,Javidani M,Maltais A,et al.Effects of natural aging and pre-aging on the strength and electrical conductivity in Al-Mg-Si AA6201 conductor alloys[J].Materials Science and Engineering A,2021,820:141538.
[21] Pogatscher S,Antrekowitsch H,Leiter B,et al.Mechanisms controlling the artificial aging of Al-Mg-Si alloys[J].Acta Materialia,2011,59(9):3352-3363.
[22] Zhao Q,Qian Z,Cui X,et al.Influences of Fe,Si and homogenization on electrical conductivity and mechanical properties of dilute Al-Mg-Si alloy[J].Journal of Alloys and Compounds,2016,666:50-57.
[23] Jiang S,Wang R.Grain size-dependent Mg/Si ratio effect on the microstructure and mechanical/electrical properties of Al-Mg-Si-Sc alloys[J].Journal of Materials Science & Technology,2019,35:1354-1363.
[24] Valiev R Z,Murashkin M Y,Sabirov I.A nanostructural design to produce high-strength Al alloys with enhanced electrical conductivity[J].Scripta Materialia,2014,76:13-16.
[25] Lin G,Zhang Z,Wang H,et al.Enhanced strength and electrical conductivity of Al-Mg-Si alloy by thermo-mechanical treatment[J].Materials Science and Engineering A,2016,650:210-217.
[26] Flores F U,Seidman D N,Dunand D C,et al.Development of high-strength and high-electrical-conductivity aluminum alloys for power transmission conductors[C]//TMS Annual Meeting & Exhibition.Springer,Cham,2018:247-251.
[27] 邵明星,马永泉,张鸿武.稀土Er对6201导电铝合金微观组织和性能的影响[J].金属材料与冶金工程,2018,46(6):13-18.SHAO Ming-xing,MA Yong-quan,ZHANG Hong-wu.Effects of Er on the microstructure and properties of 6201 aluminum alloy[J].Metal Materials and Metallurgy Engineering,2018,46(6):13-18.
[28] Xu X,Yang Z,Ye Y,et al.Effects of various Mg/Si ratios on microstructure and performance property of Al-Mg-Si alloy cables[J].Materials Characterization,2016,119:114-119.
[29] 游玉萍.时效处理工艺对6101铝合金性能的影响[J].热加工工艺,2019,48(22):172-175.YOU Yu-ping.Effect of aging treatment process on properties of 6101 aluminum alloy[J].Hot Working Technology,2019,48(22):172-175.
[30] Fu J,Yang Z,Deng Y,et al.Influence of Zr addition on precipitation evolution and performance of Al-Mg-Si alloy conductor[J].Materials Characterization,2020,159:110021.
[31] 刘东雨,李文杰,韩钰,等.高导电率耐热铝合金导体材料的合金设计[J].材料热处理学报,2014,35(1):17-21.LIU Dong-yu,LI Wen-jie,HAN Yu,et al.Alloying design of a thermal-resistant aluminum alloy conductor material with high conductivity[J].Transactions of Materials and Heat Treatment,2014,35(1):17-21.
[32] Fu J,Yang Z,Deng Y,et al.Influence of Zr addition on precipitation evolution and performance of Al-Mg-Si alloy conductor[J].Materials Characterization,2020,159:110021.
[33] 宋竹满,吴细毛,李春和,等.变形量和热处理对6060铝合金力学性能和导电率的影响[J].材料热处理学报,2015,36(1):42-46.SONG Zhu-man,WU Xi-mao,LI Chun-he,et al.Effects of rolling deformation and heat treatment on mechanical properties and electrical conductivity of 6060 aluminum alloy[J].Transactions of Materials and Heat Treatment,2015,36(1):42-46.
[34] 刘生发,罗利民,周锦平,等.钇对6063铝合金导体材料铸态组织与性能的影响[J].中国稀土学报,2018,36(2):202-207.LIU Sheng-fa,LUO Li-min,ZHOU Jin-ping,et al.Effect of yttrium addition on as-cast microstructure and properties of 6063 aluminum conductors[J].Journal of the Chinese Society of Rare Earths,2018,36(2):202-207.
[35] Wang W,Pan Q,Jiang F,et al.Microstructure evolution and performances of Al-0.7Mg-0.6Si-0.2Ce-X (X=Sc,Y and Zr) alloys with high strength and high electrical conductivity[J].Journal of Alloys and Compounds,2022,895:162654.
[36] Medvedev A E,Murashkin M Y,Enikeev N A,et al.Enhancement of mechanical and electrical properties of Al-RE alloys by optimizing rare-earth concentration and thermo-mechanical treatment[J].Journal of Alloys and Compounds,2018,745:696-704.
基本信息:
DOI:10.13289/j.issn.1009-6264.2023-zt07
中图分类号:TG146.21;TP181
引用信息:
[1]王硕,王俊升,梁婷婷等.高强、高导铝合金研发的机器学习策略[J],2023,44(11):27-34.DOI:10.13289/j.issn.1009-6264.2023-zt07.
基金信息:
国家自然科学基金面上项目(52073030),国家自然科学基金区域创新联合基金重点项目(U20A20276)