nav emailalert searchbtn searchbox tablepage yinyongbenwen piczone journalimg journalInfo searchdiv qikanlogo popupnotification paper paperNew
2020, 04, v.41;No.238 151-157
改善大截面20SiMn3MoV贝氏体钢组织和性能的热处理工艺
基金项目(Foundation):
邮箱(Email):
DOI: 10.13289/j.issn.1009-6264.2019-0429
摘要:

利用X射线衍射分析(XRD)、光学显微镜(OM)、扫描电镜(SEM)、透射电镜(TEM)等研究了930℃加热空冷及930℃加热水冷-空冷交替冷却对■53 mm无碳化物贝氏体钢20SiMn3MoV组织和力学性能的影响。结果表明:930℃加热空冷处理后,实验钢的组织较粗大,为贝氏体铁素体(BF)和分布在贝氏体铁素体板条之间的残留奥氏体(AR)组织,晶粒度等级为6.5~7.5级,抗拉强度为1288 MPa,-40℃冲击吸收能量为22.8 J。经930℃加热水冷-空冷交替冷却处理后(先水冷到400~450℃后空冷),实验钢的组织细小,为贝氏体铁素体(BF)和分布在贝氏体铁素体板条之间的残留奥氏体(AR)组织,晶粒度等级为7.5~8.0级,抗拉强度为1393 MPa,-40℃冲击吸收能量为38.8 J,表明水冷-空冷交替冷却工艺细化了实验钢的晶粒,提高了实验钢的强度及韧性,与930℃加热空冷相比,实验钢的强度提高了8.2%,低温韧性提高了70%。

Abstract:

The effects of normalizing at 930 ℃ with air-cooling and normalizing at 930 ℃ with alternate water cooling and air-cooling on microstructure and mechanical properties of carbide-free bainitic steel 20 SiMn3 MoV were studied by means of X-ray diffraction(XRD), optical microscope(OM), scanning electron microscopy(SEM) and transmission electron microscopy(TEM). The results show that after normalizing at 930 ℃ with air cooling, the microstructure of the experimental steel is coarse, and composed of bainite-ferrite(BF) and retained austenite(AR) distributed between the bainite-ferrite lath, the grain size grade is 6.5-7.5, the tensile strength is 1288 MPa, and the impact absorption energy at-40 ℃ is 22.8 J. After normalizing at 930 ℃ followed by alternate water cooling and air-cooling(first water-cooling to 400-450 ℃ and then by air cooling), the microstructure of the experimental steel is fine, and composed of bainite-ferrite(BF) and retained austenite distributed between the bainite-ferrite lath, the grain size grade is 7.5-8.0, the tensile strength is 1393 MPa, and the impact absorption energy at-40 ℃ is 38.8 J, indicating that the alternate water-cooling and air-cooling process can refine the grains of the experimental steel and improve the strength and the toughness. Compared with that after normalizing at 930 ℃ with air-cooling, the tensile strength and the low-temperature impact toughness of the steel after normalizing at 930 ℃ with alternate water cooling and air-cooling increase by 8.2% and 70%, respectively.

参考文献

[1] 胡恒法.空冷贝氏体钢的研究应用及展望[C]//中国金属学会2003中国钢铁年会论文集(4),2003:4.HU Heng-fa.Development of an air cooled bainitic steels[C]//China Metal Society,Proceedings of the 2003 China iron and steel annual meeting of the China metal society (4),2003:4.

[2] 席光兰,马勤.贝氏体钢的研究现状和发展展望[J].材料导报,2006,20(4):78-81.XI Guang-lan,MA Qin.The research situation and development prospect of bainitic steels[J].Materials Review,2006,20(4):78-81.

[3] 方鸿生,郑燕康.我国贝氏体钢的前景[J].金属热处理,1998,23(7):6-9.FANG Hong-sheng,ZHENG Yan-kang.Prospect of bainitic steels[J].Heat Treatment of Metals,1998,23(7):6-9.

[4] Bai B Z,Gao G H,Zheng Y K,et al.Development of new type Mn-series bainitic steels in China[J].Journal of Iron and Steel Research International,2011:112-120.

[5] 陈忠伟,张玉柱,杨林浩.低碳贝氏体钢的研究现状与发展前景[J].材料导报,2006,20(10):84-86.CHEN Zhong-wei,ZHANG Yu-zhu,YANG Lin-hao.Research and development of low carbon bainite Steels[J].Materials Review,2006,20(10):84-86.

[6] 李洪波,刘向东,金宝士,等.21世纪以来贝氏体钢的研究开发与应用[J].铸造设备研究,2005(1):32-33.LI Hong-bo,LIU Xiang-dong,JIN Bao-shi,et al.Research and application of bainitic steels since 21 century[J].Research Studies of Foundry Equipment,2005(1):32-33.

[7] 李大赵,崔天燮,王育田,等.低碳低合金高强贝氏体钢的研究现状及进展[J].钢铁研究学报,2013,25(11):1-5.LI Da-zhao,CUI Tian-xie,WANG Yu-tian,et al.Status and development of low carbon microalloying bainitic high strength steel[J].Journal of Iron and Steel Research,2013,25(11):1-5.

[8] 尚成嘉,杨善武,王学敏,等.低碳贝氏体钢的组织类型及其对性能的影响[J].钢铁,2005,40(4):57-61SHANG Cheng-jia,YANG Shan-wu,WANG Xue-min,et al.Microstructure and mechanical properties oflow carbon bainitic steel[J].Iron and Steel,2005,40(4):57-61.

[9] 康沫狂,贾虎生,杨延清,等.新型系列准贝氏体钢[J].金属热处理,1995,20(12):3-5.KANG Mo-kuang,JIA Hu-sheng,YANG Yan-qing,et al.New type meta-bainitic steel series[J].Heat Treatment of Metals,1995,20(12):3-5.

[10] 秦熊浦.新型准贝氏体钢的开发与应用[J].金属热处理学报,2000,21(2):100-104.QIN Xiong-pu.Development and application of the new steel series―meta-bainitic steels[J].Transactions of Metal Heat Treatment,2000,21(2):100-104.

[11] 程巨强,康沫狂.新型准贝氏体钢及工程应用[J].西安工业学院学报,2000(1):43-48.CHENG Ju-qiang,KANG Mo-kuang.New type meta-bainited steel and Its application to engineering[J].Journal of Xi’an Institute of Technology,2000(1):43-48.

[12] 程巨强,康沫狂.准贝氏体钢使用性能研究进展[J].兵器材料科学与工程,2002,25(1):61-63.CHENG Ju-qiang,KANG Mo-kuang.Research progress of service properties of Meta-bainite steel[J].Ordnance Material Science and Engineering,2002,25(1):61-63.

[13] 王明明,肖亚茹,琚立颖,等.高强度贝氏体钢中的残留奥氏体(Ⅱ)[J].材料热处理学报,2019,40(10):13-22.WANG Ming-ming,XIAO Ya-ru,JU Li-ying,et al.Retained austenite in high-strength bainitic steels (Ⅱ)[J].Transactions of Materials and Heat Treatment,2019,40(10):13-22.

[14] Tian L,Ao Q,Li S L.Effect of austenitic state on microstructure and mechanical properties of martensite/bainite steel[J].Journal of Materials Research,2014,29(7):887-895.

[15] 赵超.冷速对过冷奥氏体稳定性的影响[J].物理测试,1999(6):1-6.ZHAO Chao.Influence of cooling rate on sub-cooled austenite stability[J].Physics Examination and Testing,1999(6):1-6.

[16] Lan H F,Du L X,Liu X H.Microstructure and mechanical properties of a low carbon bainitic steel[J].Steel Research International,2012,84(4):352-361.

[17] Liu H S,Wang M H,Ge X Y,et al.Effects of different heat treatments on transformation of residual austenite in bearing steel[J].Applied Mechanics and Materials,2014(670/671):56-60.

[18] 田亚强,田耕,郑小平,等.淬火配分贝氏体钢不同位置残留奥氏体C、Mn元素表征及其稳定性[J].金属学报,2019,55(3):332-340.TIAN Ya-qiang,TIAN Geng,ZHENG Xiao-ping,et al.C and Mn elements characterization and stability of retained austenite in different locations of quenching and partitioning bainite steels[J].Acta Metallurgica Sinica,2019,55(3):332-340.

基本信息:

DOI:10.13289/j.issn.1009-6264.2019-0429

中图分类号:TG161

引用信息:

[1]程彦,程巨强.改善大截面20SiMn3MoV贝氏体钢组织和性能的热处理工艺[J],2020,41(04):151-157.DOI:10.13289/j.issn.1009-6264.2019-0429.

基金信息:

检 索 高级检索

引用

GB/T 7714-2015 格式引文
MLA格式引文
APA格式引文