232 | 1 | 14 |
下载次数 | 被引频次 | 阅读次数 |
采用机械合金化和微波烧结制备了La2O3掺杂的WC-10AlCoCrFeNi硬质合金,研究了La2O3含量对WC-10AlCoCrFeNi硬质合金相结构、微观组织和力学性能影响。结果表明:机械合金化制备的高熵合金粉末化学成分均匀,无明显富集现象;La2O3可以降低Al元素氧化程度,细化晶粒,促进裂纹的偏转和桥接;随着La2O3含量的增加,硬质合金的晶粒尺寸先增大后减小,力学性能先升高后降低。当La2O3含量为0.075 mass%时,硬质合金的组织均匀,性能最好,晶粒尺寸达0.44μm,相对密度为95.81%、硬度为1616.57 HV30、断裂韧性为13.64 MPa·m1/2、弯曲强度为1404.05 MPa。
Abstract:WC-10AlCoCrFeNi cemented carbides doped with La2O3 were prepared by mechanical alloying and microwave sintering. The effect of La2O3 content on phase structure, microstructure and mechanical properties of the WC-10AlCoCrFeNi cemented carbides was studied. The results show that the high entropy alloy powder prepared by mechanical alloying has uniform chemical composition and no obvious enrichment phenomenon. La2O3 can reduce the oxidation degree of Al element, refine grain size, and promote crack deflection and bridging. With the increase of La2O3 content, the grain size of the cemented carbides first increases and then decreases, and the mechanical properties first increase and then decrease. When the content of La2O3 is 0.075 mass%, the microstructure of the cemented carbides is uniform and the performance is the best, the grain size is 0.44 μm, the relative density is 95.81%, the hardness is 1616.57 HV30, the fracture toughness is 13.64 MPa·m1/2, and the bending strength is 1404.05 MPa.
[1] García J,Ciprés V C,Blomqvist A,et al.Cemented carbide microstructures:A review[J].International Journal of Refractory Metals and Hard Materials,2019,80:40-68.
[2] Yu B H,Li Y P,Lei Q,et al.Microstructures and mechanical properties of WC-Co-xCr-Mo cement carbides[J].Journal of Alloys and Compounds,2019,771:636-642.
[3] Katiyar P K,Singh P K,Singh R,et al.Modes of failure of cementedtungsten carbide tool bits (WC/Co):A study of wear parts[J].International Journal of Refractory Metals and Hard Materials,2016,54:27-38.
[4] 蒲科锦,王廷军,孟东,等.多主元高熵合金材料的研究进展[J].新技术新工艺,2022(2):10-14.PU Ke-jin,WANG Ting-jun,MENG Dong,et al.Research progress of high-entropy alloys materials with multi-principal element[J].New Technology and New Process,2022(2):10-14.
[5] Yeh J W.Alloy design strategies and future trends in high-entropy alloys[J].JOM,2013,65(12):1759-1771.
[6] Wu Z G,Gao Y F,Bei H B.Thermal activation mechanisms and Labusch-type strengthening analysis for a family of high-entropy and equiatomic solid-solution alloys[J].Acta Materialia,2016,120:108-119.
[7] Miracle D B,Senkov O N.A critical review of high entropy alloys and related concepts[J].Acta Materialia,2017,122:448-511.
[8] 周盼龙,肖代红,周鹏飞,等.热压法制备超细晶WC-AlxCrFeCoNi硬质材料及其组织与性能[J].粉末冶金材料科学与工程,2019,2(2):9-14.ZHOU Pan-long,XIAO Dai-hong,ZHOU Peng-fei,et al.Microstructure and properties of ultrafine-grained WC-AlxCrFeCoNi composites prepared by hot pressing[J].Materials Science and Engineering of Powder Metallurgy,2019,2(2):9-14.
[9] Zhou P F,Xiao D H,Yuan T C.Comparison between ultrafine grained WC-Co and WC-HEA cemented carbides[J].Powder Metallurgy,2017,60(1):1-6.
[10] Andrea M G,Alveen P,Sven R,et al.The manufacture and characterization of WC-(Al)CoCrCuFeNi cemented carbides with nominally high entropy alloy binders[J].International Journal of Refractory Metals and Hard Materials,2019,84:105032-105044.
[11] Dong D Q,Xiang X,Huang B,et al.Microstructure and properties of WC-Co/CrMnFeCoNi composite cemented carbides[J].Vacuum,2020,179:109571-109579.
[12] 魏仕勇,万珍珍,付青峰,等.混合稀土氧化物与再生WC-Co粉制备YG8硬质合金的研究[J].热加工工艺,2015,44(14):55-58.WEI Shi-yong,WAN Zhen-zhen,FU Qing-feng,et al.Research on YG8 carbides prepared by WC-Co powder on regeneration and mixed rare earth oxide[J].Hot Working Technology,2015,44(14):55-58.
[13] Zhang J J,Nie W Y,Wei X L,et al.Microstructure and properties of in situ La2O3 and SiC co-doped WC-10 wt%Ni cemented carbides prepared by microwave sintering[J].Ceramics International,2020,46(18):28013-20824.
[14] Li J F,Cheng J G,Wei B Z,et al.Preparation and performance of ultrafine grained WC-10Co alloys with added La2O3[J].Ceramics International,2019,45(3):3969-3976.
[15] Yang Y,Luo L M,Zan X,et al.Synthesis of Y2O3-doped WC-Co powders by wet chemical method and its effect on the properties of WC-Co cemented carbide alloy[J].International Journal of Refractory Metals and Hard Materials,2020,92:105324-105335.
[16] 郑孝英,李毅恒,何奥希,等.基于金属粉末微波烧结技术的研究现状[J].矿冶,2018,27(4):61-65.ZHENG Xiao-ying,LI Yi-heng,HE Ao-xi,et al.Resarch status of micrwave sintering technology based on metal powder[J].Mining and Metallurgy,2018,27(4):61-65.
[17] 杨植富,唐思文,张浩,等.微波烧结工艺对NbC-10 vol%Ni金属陶瓷组织与性能的影响[J].材料热处理学报,2022,43(12):10-18.YANG Zhi-fu,TANG Si-wen,ZHANG Hao,et al.Influence of microwave sintering process on microstructure and properties of NbC-10 vol%Ni cermet[J].Transactions of Materials and Heat Treatment,2022,43(12):10-18.
[18] Lu J,Tang S W,Zhang H,et al.Preparation and mechanical properties of SiCw-reinforced WC-10Ni3Al cemented carbide by microwave sintering[J].Ceramics International,2023,49(13):21587-21601.
[19] Zhang H,Tang S W,Lu J,et al.Study on the microstructure and mechanical properties of microwave sintered NbC-Ni cermets reinforced by multilayer graphene[J].Ceramics International,2023,49(12):20127-20137.
[20] Zhu S G,Hui J Q,Sun X K,et al.Effect of phase transformation of CoCrFeNiAl high-entropy alloy on mechanical properties of WC-CoCrFeNiAl composites[J].Ceramics International,2023,49(20):32388-32398.
[21] Fang Y H,Chen N,Du G P,et al.High-temperature oxidation resistance,mechanical and wear resistance properties of Ti(C,N)-based cermets with Al0.3CoCrFeNi high entropy alloy as a metal binder[J].Journal of Alloys and Compounds,2019,815:152486.
[22] 于源,乔竹辉,任海波,等.高熵合金摩擦磨损性能的研究进展[J].材料工程,2022,50(3):1-17.YU Yuan,QIAO Zhu-hui,REN Hai-bo,et al.Research progress in tribological properties of high entropy alloys[J].Journal of Materials Engineering,2022,50(3):1-17.
[23] Zhou P L,Xiao D H,Zhou P F,et al.Microstructure and properties of ultrafine grained AlCrFeCoNi/WC cemented carbides[J].Ceramics International,2018,44(14):17160-17166.
[24] 郑东海,唐愈.高熵合金CoCrFeNiTiAl粘结WC硬质合金的制备与研究[J].粉末冶金工业,2022,32(6):16-20.ZHENG Dong-hai,TANG Yu.Preparation and research of high-entropy-alloy CoCrFeNiTiAl bonded WC cemented carbide[J].Powder Metallurgy Industry,2022,32(6):16-20.
[25] Zhu G,Liu Y,Ye J W.Influence of Ce-Co pre-alloyed powder addition on the microstructure and mechanical properties of Ti(C,N)-based cermets[J].International Journal of Refractory Metals and Hard Materials,2013,37(3):134-141.
[26] Ou X Q,Xiao D H,Shen T T,et al.Characterization and preparation of ultra-fine grained WC-Co alloys with minor La-additions[J].International Journal of Refractory Metals and Hard Materials,2012,31:266-273.
[27] 杨珍,鲁金涛,赵新宝,等.稀土元素对合金高温氧化的影响[J].中国稀土学报,2014,32(6):641-649.YANG Zhen,LU Jin-tao,ZHAO Xin-bao,et al.Effect of rare earth elements on high temperature oxidation of metals[J].Journal of the Chinese Society of Rare Earths,2014,32(6):641-649.
[28] Peng X,Guan Y,Dong Z,et al.A fundamental aspect of the growth process of alumina scale on a metal with dispersion of CeO2 nanoparticles[J].Corrosion Science,2011,53(5):1954-1959.
[29] Gorr B,Mueller F,Christ H J,et al.High temperature oxidation behavior of an equimolar refractory metal-based alloy 20Nb20Mo20Cr20Ti20Al with and without Si addition[J].Journal of Alloys and Compounds,2016,688:468-477.
[30] Wang S,Chen Z,Zhang P,et al.Influence of Al content on high temperature oxidation behavior of AlxCoCrFeNiTi0.5 high entropy alloys[J].Vacuum,2019,163:263-268.
[31] Luo W Y,Liu Y Z,Tu C.Wetting behaviors and inter facial characteristics of molten AlxCoCrCuFeNi high-entropy alloys on a WC substrate[J].Materials Science and Technology,2021,19:192-201.
[32] Li J,Zhang H,Gao M,et al.High-temperature wettability and interactions between Y-containing Ni-based alloys and various oxide ceramics[J].Materials,2018,11(5):749-762.
[33] 汪艳亮,王云,谢小豪,等.稀土硬质合金研究进展[J].有色金属科学与工程,2019,10(5):106-112.WANG Yan-liang,WANG Yun,XIE Xiao-hao,et al.Research progress on rare earth cemented carbide[J].Nonferrous Metals Science and Engineering,2019,10(5):106-112.
[34] 胡冬梅,杜劲,王一飞,等.稀土氧化物对再生YG8硬质合金性能的影响[J].稀有金属与硬质合金,2020,48(2):69-74.HU Dong-mei,DU Jin,WANG Yi-fei,et al.Effects of rare earth oxide on properties of regenerated YG8 cemented carbides[J].Rare Metals and Cemented Carbides,2020,48(2):69-74.
[35] Sun X,Wang Y,Li D Y.Mechanical properties and erosion resistance of ceria nano-particle-doped ultrafine WC-12Co composite prepared by spark plasma sintering[J].Wear,2013,301(1/2):406-414.
[36] Liu G H,Li R D,Yuan T C,et al.Spark plasma sintering of pure TiCN:Densification mechanism,grain growth and mechanical properties[J].International Journal of Refractory Metals and Hard Materials,2017,66:68-75.
基本信息:
DOI:10.13289/j.issn.1009-6264.2023-0428
中图分类号:TG135.5
引用信息:
[1]付洛辉,唐思文,卢继等.La_2O_3掺杂对微波烧结WC-10AlCoCrFeNi硬质合金微观结构及性能的影响[J],2024,45(06):73-83.DOI:10.13289/j.issn.1009-6264.2023-0428.
基金信息:
国家自然科学基金面上项目(52275424);; 湖南省自然科学基金面上项目(2023JJ30257);; 湖南省教育厅重点项目(22A0346)