3,122 | 25 | 209 |
下载次数 | 被引频次 | 阅读次数 |
随着经济高速发展,光催化技术由于其不仅可以制备出清洁氢能源,同时还可以降解污染物,已成为清洁能源制备和环境污染处理领域内潜在的重要技术之一。作为光催化技术的核心材料TiO2,由于其具有良好的耐光腐蚀性和催化活性已成为最具潜力的光催化剂,但传统的TiO2光催化剂存在可见光利用率低以及光生电子空穴对复合速度快等缺点,使其在光催化领域的应用受到限制。为了解决上述问题,表面改性和掺杂的方式是提高TiO2光催化活性最有效的途径。目前,二维(2D)材料由于其独特的结构和性能,已成为TiO2光催化潜在的理想载体材料,同时还可以实现其表面改性,将二者进行复合发挥其协同作用,可以显著改善TiO2的光催化性能。因此,本文以二维材料和TiO2光催化材料为中心,重点介绍了二维材料/TiO2复合材料的制备方法,并详细地介绍二维材料/TiO2复合材料的光催化机理,旨在为新型TiO2光催化剂的制备提供理论指导。
Abstract:With the rapid development of economy, photocatalysis technology has been become one of the potential important technologies in the field of clean energy preparation and environmental pollution treatment because it can not only produce clean hydrogen energy, but also degrade pollutants. As the core material of photocatalysis technology, TiO2 has become the most promising photocatalyst due to its good photo corrosion resistance and catalytic activity. However, the traditional TiO2 photocatalyst has the disadvantages of low utilization of visible light and fast recombination speed of photogenerated electron-hole pairs, which limits its application in the field of photocatalysis. In order to solve the above problems, surface modification and doping are the most effective ways to improve TiO2 photocatalytic activity. At present, two-dimensional(2D) materials have become potential ideal carrier materials for TiO2 photocatalysis due to their unique structure and performance, and they can also achieve surface modification. By combining the two to play their synergistic role, TiO2 photocatalysis performance can be significantly improved. Therefore, focusing on two-dimensional materials and TiO2 photocatalytic materials, the preparation methods of two-dimensional materials/TiO2 composites are introduced in this paper, and introduces the photocatalytic mechanism of two-dimensional materials/TiO2 composites in detail, aiming to provide theoretical guidance for the preparation of new TiO2 photocatalysts.
[1] Xia Z L,Yu R,Yang H,et al.Novel 2D Zn-porphyrin metal organic frameworks revived CdS for photocatalysis of hydrogen production[J].International Journal of Hydrogen Energy,2022,47(27):13340-13350.
[2] Ma X Y,Gao Y F,Yang B,et al.Enhanced charge separation in La2NiO4 nanoplates by coupled piezocatalysis and photocatalysis for efficient H2 evolution[J].Nanoscale,2022,14(18):7083-7095.
[3] Zhang J N,Lei Y F,Cao S,et al.Photocatalytic hydrogen production from seawater under full solar spectrum without sacrificial reagents using TiO2 nanoparticles[J].Nano Research,2021,10:1-10.
[4] Liu S,Su Z L,Liu Y,et al.Mechanism and purification effect of photocatalytic wastewater treatment using graphene oxide-doped titanium dioxide composite nanomaterials[J].Water,2021,13(14):1915.
[5] Gotipamul P P,Vattikondala G,Rajan K D,et al.Impact of piezoelectric effect on the heterogeneous visible photocatalysis of g-C3N4/Ag/ZnO tricomponent[J].Chemosphere,2022,287:132298-132298.
[6] Xiao H B,Liu P Y,Wang W,et al.Ruddlesden-popper perovskite oxides for photocatalysis-based water splitting and wastewater treatment[J].Energy Fuels,2020,34(8):9208-9221.
[7] Luo G B,Liu H B,Li W J,et al.Automobile exhaust removal performance of pervious concrete with nano TiO2 under photocatalysis[J].Nanomaterials,2020,10(10):2088.
[8] Tran H T V,Cao M T,Pham V V.Enhancing photocatalysis of NO gas degradation over g-C3N4 modified α-Bi2O3 microrods composites under visible light[J].Materials Letters,2020,281:128637.
[9] Cheng M M,Yuan W B,Li C F,et al.Photocatalysis-membrane integrated system for organic pollutants removal[J].Composites Communications,2022,32:101137.
[10] Chen H L,Liu F Y,Xiao X,et al.Visible-light-driven photocatalysis of carbon dioxide and organic pollutants by MFeO2 (M=Li,Na,or K)[J].Journal of Colloid and Interface Science,2021,601:758-772.
[11] Escobedo S,Lasa H D.Photocatalysis for air treatment processes:current technologies and future applications for the removal of organic pollutants and viruses[J].Catalysts,2020,10(9):966.
[12] Luo Z,Li Y H,Guo F B,et al.Carbon dioxide conversion with high-performance photocatalysis into methanol on NiSe2/WSe2[J].Energies,2020,13(17):1-11.
[13] Fang F,Liu Y X,Sun X,et al.TiO2 facet-dependent reconstruction and photocatalysis of CuOx/TiO2 photocatalysts in CO2 photoreduction[J].Applied Surface Science,2021,564:150407.
[14] Mu Y F,Zhang C,Zhang M R,et al.Direct Z-scheme heterojunction of ligand-free FAPbBr3/α-Fe2O3 for boosting photocatalysis of CO2 reduction coupled with water oxidation[J].ACS Applied Materials & Interfaces,2021,13(19):22314-22322.
[15] 陈鹏,周莹,董帆.二维光催化材料电子结构和性能调控策略研究进展[J].物理化学学报,2021,37(8):43-57.CHEN Peng,ZHOU Ying,DONG Fan.Advances in regulation strategies for electronic structure and performance of two-dimensional photocatalytic materials[J].Acta Physico-Chimica Sinica,2021,37(8):43-57.
[16] Coleman J N,Lotya M,O’Neill A,et al.Two-dimensional nanosheets produced by liquid exfoliation of layered materials[J].Science,2011,331(6017):568-571.
[17] Wang G,Chang J,Tang W,et al.2D materials and heterostructures for photocatalytic water-splitting:A theoretical perspective[J].Journal of Physics D:Applied Physics,2022,55(29):293002-293017.
[18] Hu R,Liao G C,Huang Z Y,et al.Recent advances of monoelemental 2D materials for photoctalytic applications[J].Journal of Hazardous Materials,2020,405(7):124179.
[19] Wu S,Senevirathna H L,Weerasinghe P,et al.Engineering electronic structure and band alignment of 2D Mg(OH)2 via anion doping for photocatalytic applications[J].Materials,2021,14(10):2640.
[20] Wang J,Peng Z B,Zhu K L,et al.The fate of oxygen on graphene-catalyst in the photocatalytic water splitting reaction[J].Catalysis Science & Technology,2021,11(21):7083-7090.
[21] 李能,孔周舟,陈星竹,等.新型二维材料光催化与电催化研究进展[J].无机材料学报,2020,35(7):735-747.LI Neng,KONG Zhou-zhou,CHEN Xing-zhu,et al.Research progress of novel two-dimensional materials in photocatalysis and electrocatalysis[J].Journal of Inorganic Materials,2020,35(7):735-747.
[22] 王颖,杨传玺,王小宁,等.二维光催化材料研究进展[J].有色金属科学与工程,2021,12(2):30-42.WANG Ying,YANG Chuan-xi,WANG Xiao-ning,et al.Research advances on two-dimensional materials using as photocatalysts[J].Nonferrous Metals Science and Engineering,2021,12(2):30-42.
[23] 褚亮亮,董斌,周建伟,等.g-C3N4负载磷钨酸的表征及光催化性能[J].河南师范大学学报(自然科学版),2015,43(6):85-89.CHU Liang-liang,DONG Bin,ZHOU Jian-wei,et al.Characterization and photocatalytic performance of PW loaded on g-C3N4[J].Journal of Henan Normal University(Natural Science Edition),2015,43(6):85-89.
[24] Thakur S,Karak N.Alternative methods and nature-based reagents for the reduction of graphene oxide:A review[J].Carbon,2015,94:224-242.
[25] Thongpool V,Phunpueok A.Preparation and photocatalytic performance of RGO/TiO2 photocatalyst[J].Key Engineering Materials,2017,728:359-363.
[26] Hou Y Q,Pu S Y,Shi Q Q,et al.Ultrasonic impregnation assisted in-situ photoreduction deposition synthesis of Ag/TiO2/rGO ternary composites with synergistic enhanced photocatalytic activity[J].Journal of the Taiwan Institute of Chemical Engineers,2019,104:139-150.
[27] Li X,Yu J G,Wageh S,et al.Graphene in photocatalysis:A review[J].Small,2016,12(48):6640-6696.
[28] Jin S N,Yang Y N,Zhang J J,et al.Preparation of a novel TiO2-graphene 3D framework material for efficient adsorption-photocatalytic removal of micro-organic contaminants from water[J].Materials Chemistry and Physics,2021,263:124339.
[29] Faiz M S,Azurahanim C A,Yazid Y,et al.Preparation and characterization of graphene oxide from tea waste and it’s photocatalytic application of TiO2/graphene nanocomposite[J].Materials Research Express,2020,7(1):015613.
[30] Li W,Wang F,Feng S S,et al.Sol-gel design strategy for ultradispersed TiO2 nanoparticles on graphene for high-performance lithium ion batteries[J].Journal of the American Chemical Society,2013,135(49):18300-18303.
[31] Altin I.CuO-TiO2/graphene ternary nanocomposite for highly efficient visible-light-driven photocatalytic degradation of bisphenol A[J].Journal of Molecular Structure,2022,1252:132199.
[32] Pei C,Zhu J H,Xing F.Photocatalytic property of cement mortars coated with graphene/TiO2 nanocomposites synthesized via sol-gel assisted electrospray method[J].Journal of Cleaner Production,2020,279(1):123590.
[33] Guan S,Hao L,Yoshida H,et al.Enhanced photocatalytic activity and stability of TiO2/graphene oxide composites coatings by electrophoresis deposition[J].Materials Letters,2021,286:129258.
[34] Shi Y,Yang D,Yu R,et al.An efficient photocatalytic reduction approach for synthesizing chemically bonded N-doped TiO2/reduced graphene oxide hybrid as a freestanding electrode for high-performance lithium storage[J].ACS Applied Energy Materials,2018,1(8):4186-4195.
[35] Das M,Datta J,Biswas A,et al.Enhanced charge transport properties of rGO-TiO2 based Schottky diode by tuning graphene content[J].Materials Today:Proceedings,2019,11(2):776-781.
[36] Williams G,Seger B,Kamat P V.TiO2-graphene nanocomposites.UV-assisted photocatalytic reduction of graphene oxide[J].ACS Nano,2008,2(7):1487-1491.
[37] Wang M Z,Liang F X,Nie B,et al.TiO2 nanotube array/monolayer graphene film schottky junction ultraviolet light photodetectors[J].Particle & Particle Systems Characterization,2013,30(7):630-636.
[38] Dai Y H,Gong S S,Zhong Z S,et al.Effect of graphene/TiO2(001) interface on threshold voltage and nonlinearity[J].Nano:Brief Reports & Reviews,2018,13(6):1830004.
[39] Lettieri S,Gargiulo V,Pallotti D K,et al.Evidencing opposite charge-transfer processes at TiO2/graphene-related materials interface through a combined EPR,photoluminescence and photocatalysis assessment[J].Catalysis Today,2018,315:19-30.
[40] Wang P,Wang J,Ming T S,et al.Dye-sensitization-induced visible-light reduction of graphene oxide for the enhanced TiO2 photocatalytic performance[J].ACS Applied Materials & Interfaces,2013,5(8):2924-2929.
[41] Hasan J,Wang J,Wang Z,et al.Enhanced ultraviolet-visible photocatalysis of RGO/Equaixial geometry TiO2 composites on degradation of organic dyes in water[J].Environmental Science and Pollution Research,2022,29(8):12222-12236.
[42] Ma J,Dai J N,Duan Y L,et al.Fabrication of PANI-TiO2/rGO hybrid composites for enhanced photocatalysis of pollutant removal and hydrogen production[J].Renewable Energy,2020,156:1008-1018.
[43] Janekbary K K,Gilani N,Pirbazari A E.One-step fabrication of Ag/RGO doped TiO2 nanotubes during anodization process with high photocatalytic performance[J].Journal of Porous Materials,2020,27(6):1809-1822.
[44] Noor S,Sajjad S,Leghari S,et al.Competitive role of nitrogen functionalities of N doped GO and sensitizing effect of Bi2O3 QDs on TiO2 for water remediation[J].Journal of Environmental Sciences,2021,108:107-119.
[45] Shi M,Li W G,Wang Q,et al.One-step hydrothermal synthesis of BiVO4/TiO2/RGO composite with effective photocatalytic performance for the degradation of ciprofloxacin[J].Optical Materials,2021,122:111726.
[46] Ge C N,Chen J,Tang S L,et al.A Review of the electronic,optical,and magnetic properties of graphdiyne:from theories to experiments[J].ACS Applied Materials & Interfaces,2018 11(3):2707-2716.
[47] Su K,Dong G X,Zhang W,et al.In situ coating CsPbBr3 nanocrystals with graphdiyne to boost the activity and stability of photocatalytic CO2 reduction[J].ACS Applied Materials & Interfaces,2020,12(45):50464-50471.
[48] Jin Z L,Zhang L J,Wang G R,et al.Graphdiyne formed S-scheme heterojunction composite for efficient photocatalytic hydrogen evolution over rational design novel CuI-GD/g-C3N4 composite[J].Sustainable Energy Fuels,2020,4(10):1-23.
[49] Wang Z H,Zhao J,Wan Q,et al.Halogen-driven bandgap opening in graphdiyne for overall photocatalytic water splitting[J].Chinese Journal of Chemical Physics,2021,34(6):805-813.
[50] Li G X,Li Y L,Qian X M,et al.Construction of tubular molecule aggregations of graphdiyne for highly efficient field emission[J].Journal of Physical Chemistry C,2011,115(6):2611-2615.
[51] Zhou J Y,Gao X,Liu R,et al.Synthesis of graphdiyne nanowalls using acetylenic coupling reaction[J].Journal of the American Chemical Society,2015,137(24):7596-7599.
[52] Xie Y Z,Wang Y,Ma Y,et al.Photoelectrochemical sensor based on carboxylated graphdiyne co-sensitized TiO2 for sensitive detection of dopamine[J].Materials Today Chemistry,2022,26:101143.
[53] Zhu M Y,Dong Y Z,Xu J L,et al.Enhanced photovoltaic performance of dye-sensitized solar cells (DSSCs) using graphdiyne-doped TiO2 photoanode[J].Journal of Materials Science,2019,54(6):4893-4904.
[54] Jin Z L,Cao Y.A new allotrope of carbon-graphdiyne,synthesis and application in photocatalytic hydrogen evolution with surface plasmon resonance enhancement[J].Sustainable Energy & Fuels,2021,5(18):4690-4700.
[55] Wang R,Shi M S,Xu F Y,et al.Graphdiyne-modified TiO2 nanofibers with osteoinductive and enhanced photocatalytic antibacterial activities to prevent implant infection[J].Nature Communications,2020,11(1):1-12.
[56] Lin Z Y,Liu G Z,Zheng Y P,et al.Three-dimensional hierarchical mesoporous flower-like TiO2@graphdiyne with superior electrochemical performances for lithium-ion batteries[J].Journal of Materials Chemistry A,2018,6(45):22655-22661.
[57] Xu F Y,Meng K,Zhu B C,et al.Graphdiyne:A new photocatalytic CO2 reduction cocatalyst[J].Advanced Functional Materials,2019,29(43):1904256.
[58] Wang S,Yi L X,Halper J E,et al.A novel and highly efficient photocatalyst based on P25-graphdiyne nanocomposite[J].Small,2012,8(2):265-271.
[59] 刘媛媛.新型光催化材料石墨炔-TiO2的第一性原理研究[J].化学学报,2013,71(2):125-129.LIU Yuan-yuan.First-principles study on new photocatalytic materials graphdiyne-TiO2[J].Acta Chimica Sinica,2013,71(2):125-129.
[60] Xiang Y,Liu J J,Yu X L,et al.Preparation of graphdiyne-doped TiO2/SiO2 composite for enhanced photocatalytic activity[J].Journal of Nanoparticle Research,2020,22(12):1-10.
[61] Zhang X,Jiang S P.Layered g-C3N4/TiO2 nanocomposites for efficient photocatalytic water splitting and CO2 reduction:A review[J].Materials Today Energy,2022,23:100904.
[62] Cao Z Z,Su J,Li Y,et al.High-energy ball milling assisted one-step preparation of g-C3N4/TiO2@Ti3C2 composites for effective visible light degradation of pollutants[J].Journal of Alloys and Compounds,2021,889:161771.
[63] Zhou J,Zhang M,Zhu Y.Photocatalytic enhancement of hybrid C3N4/TiO2 prepared via ball milling method[J].Physical Chemistry Chemical Physics,2015,17(5):3647-3652.
[64] Li H L,Gao Y,Wu X Y,et al.Fabrication of heterostructured g-C3N4/Ag-TiO2 hybrid photocatalyst with enhanced performance in photocatalytic conversion of CO2 under simulated sunlight irradiation[J].Applied Surface Science,2017,402:198-207.
[65] Sun S F,Sun M X,Fang Y L,et al.One-step in situ calcination synthesis of g-C3N4/N-TiO2 hybrids with enhanced photoactivity[J].RSC Advances,2016,6(16):13063-13071.
[66] Lu Z,Zeng L,Song W L,et al.In situ synthesis of C-TiO2/g-C3N4 heterojunction nanocomposite as highly visible light active photocatalyst originated from effective interfacial charge transfer[J].Applied Catalysis B:Environmental,2017,202:489-499.
[67] Yu H J,Xu S S,Zhang S J,et al.In-situ construction of core-shell structured TiB2-TiO2@g-C3N4 for efficient photocatalytic degradation[J].Applied Surface Science,2022,579:152201.
[68] Zi T Q,Zhao X R,Liu C,et al.A facile route to prepare TiO2/g-C3N4 nanocomposite photocatalysts by atomic layer deposition[J].Journal of Alloys and Compounds,2021,855:157446.
[69] Balu S,Chen Y L,Yang T C K,et al.Effect of ultrasound-induced hydroxylation and exfoliation on P90-TiO2/g-C3N4 hybrids with enhanced optoelectronic properties for visible-light photocatalysis and electrochemical sensing[J].Ceramics International,2020,46(11):18002-18018.
[70] Qiu J H,Feng Y,Zhang X F,et al.Facile stir-dried preparation of g-C3N4/TiO2 homogeneous composites with enhanced photocatalytic activity[J].RSC Advances,2017,7(18):10668-10674.
[71] Bu Y Y,Chen Z W,Tian X,et al.Fabrication of C3N4 ultrathin flakes by mechanical grind method with enhanced photocatalysis and photoelectrochemical performance[J].RSC Advances,2016,6:47813-47819.
[72] Cui L,Liu S L,Wang F K,et al.Growth of uniform g-C3N4 shells on 1D TiO2 nanofibers via vapor deposition approach with enhanced visible light photocatalytic activity[J].Journal of Alloys and Compounds,2020,826:154001.
[73] Wang J,Wang G,Cheng B,et al.Sulfur-doped g-C3N4/TiO2 S-scheme heterojunction photocatalyst for Congo Red photodegradation[J].Chinese Journal of Catalysis,2021,42(1):56-68.
[74] Boonprakob N,Wetchakun N,Phanichphant S,et al.Enhanced visible-light photocatalytic activity of g-C3N4/TiO2 films[J].Journal of Colloid and Interface Science,2014,417:402-409.
[75] Wang T,Ding H H,Xiao H,et al.Study on the homogeneous design of ultra-thin protonated g-C3N4 composite TiO2 hollow spheres and its photocatalytic performance for RHB[J].Journal of Materials Science:Materials in Electronics,2022,33(7):4482-4496.
[76] Wang C Y,Rao Z P,Mahmood A,et al.Improved photocatalytic oxidation performance of gaseous acetaldehyde by ternary g-C3N4/Ag-TiO2 composites under visible light[J].Journal of Colloid and Interface Science,2021,602:699-711.
[77] Zou J Y,Yu Y Z,Yan W J,et al.A facile route to synthesize boron-doped g-C3N4 nanosheets with enhanced visible-light photocatalytic activity[J].Journal of Materials Science,2019,54(9):6867-6881.
[78] Balakumar V,Selvarajan S,Baishnisha A,et al.In-situ growth of TiO2@B-doped g-C3N4 core-shell nanospheres for boosts the photocatalytic detoxification of emerging pollutants with mechanistic insight[J].Applied Surface Science,2022,577:151924.
[79] Xiang Q,Yu J,Jaroniec M.Synergetic effect of MoS2 and graphene as cocatalysts for enhanced photocatalytic H2 production activity of TiO2 nanoparticles[J].Journal of the American Chemical Society,2012,134(15):6575-6578.
[80] Gonzalez N C,Calzadilla O,Roque J,et al.Study of the effect of TiO2 layer on the adsorption and photocatalytic activity of TiO2-MoS2 heterostructures under visible-infrared light[J].International Journal of Photoenergy,2020,2020:1-9.
[81] Mahalakshmi G,Rajeswari M,Ponnarasi P.Synthesis of few-layer g-C3N4 nanosheets-coated MoS2/TiO2 heterojunction photocatalysts for photo-degradation of methyl orange (MO) and 4-nitrophenol (4-NP) pollutants[J].Inorganic Chemistry Communications,2020,120:108146.
[82] Wang D,Xu Y,Sun F,et al.Enhanced photocatalytic activity of TiO2 under sunlight by MoS2 nanodots modification[J].Applied Surface Science,2016,377:221-227.
[83] Pi Y,Zhen L,Xu D,et al.1T-phase MOS2 nanosheets on TiO2 nanorod arrays:3D photoanode with extraordinary catalytic performance[J].ACS Sustainable Chemistry & Engineering,2017,5(6):5175-5182.
[84] Phung H,Khanh N V,Thi K L P,et al.Investigating visible-photocatalytic activity of MoS2/TiO2 heterostructure thin films at various MoS2 deposition times[J].Journal of Nanomaterials,2017,2017(11):1-6.
[85] He H Y,Lin J H,Fu W,et al.MoS2/TiO2 edge-on heterostructure for efficient photocatalytic hydrogen evolution[J].Advanced Energy Materials,2016,6(14):1600464.
[86] Haandel L V L,Geus J W,Weber T T.Direct synthesis of TiO2-supported MoS2 nanoparticles by reductive coprecipitation[J].ChemCatChem,2016,8(7):1367-1372.
[87] Shan Y J,Cui J L,Liu Y,et al.TiO2 anchored on MoS2 nanosheets based on molybdenite exfoliation as an efficient cathode for enhanced Cr (VI) reduction in microbial fuel cell[J].Environmental Research,2020,190:110010.
[88] Singh S,Raj S,Sharma S.Ethanol sensing using MoS2/TiO2 composite prepared via hydrothermal method[J].Materials Today:Proceedings,2021,46:6083-6086.
[89] Maji T K,Rajlakshmi A J,Mukherjee S,et al.Combinatorial large-area MoS2/Anatase-TiO2 interface:A pathway to emergent optical and optoelectronic functionalities[J].ACS Applied Materials & Interfaces,2020,12(39):44345-44359.
[90] Chandrabose G,Dey A,Gaur S S,et al.Removal and degradation of mixed dye pollutants by integrated adsorption-photocatalysis technique using 2-D MoS2/TiO2 nanocomposite[J].Chemosphere,2021,279:130467-130479.
[91] Sun Y Q,Lin H H,Wang C X,et al.Morphology-controlled synthesis of TiO2/MoS2 nanocomposites with enhanced visible-light photocatalytic activity[J].Inorganic Chemistry Frontiers,2018,5(1):145-152.
[92] He H Y.Efficient hydrogen evolution activity of 1T-MoS2/Si-doped TiO2 nanotube hybrids[J].International Journal of Hydrogen Energy,2017,42(32):20739-20748.
[93] Li C C,Zhang S Y,Zhou Y,et al.A situ hydrothermal synthesis of a two-dimensional MoS2/TiO2 heterostructure composite with exposed (001) facets and its visible-light photocatalytic activity[J].Journal of Materials Science:Materials in Electronics,2017,28(12):9003-9010.
[94] Yu Y J,Wan J M,Yang Z A,et al.Preparation of the MoS2/TiO2/HMFs ternary composite hollow microfibres with enhanced photocatalytic performance under visible light[J].Journal of Colloid and Interface Science,2017,502:100-111.
[95] Zhou R,Yang S,Tao E,et al.The defect is perfect:MoS2/TiO2 modified with unsaturated Mo vacancies to construct Z-scheme heterojunction & improve mobility of e[J].Journal of Cleaner Production,2022,337:130511.
[96] Yang J C E,Zhu M P,Duan X,et al.The mechanistic difference of 1T-2H MoS2 homojunctions in persulfates activation:Structure-dependent oxidation pathways[J].Applied Catalysis B:Environmental,2021,297:120460-120477.
[97] Bai S,Wang L M,Chen X Y,et al.Chemically exfoliated metallic MoS2 nanosheets:A promising supporting co-catalyst for enhancing the photocatalytic performance of TiO2 nanocrystals[J].Nano Research,2015,8(1):175-183.
[98] Han H S,Kim K M,Lee C W,et al.Few-layered metallic 1T-MoS2/TiO2 with exposed (001) facets:two-dimensional nanocomposites for enhanced photocatalytic activities[J].Physical Chemistry Chemical Physics,2017,19(41):28207-28215.
[99] Pang Q,Zhao Y Y,Bian X F,et al.Hybrid graphene@MoS2@TiO2 microspheres for use as a high-performance negative electrode material for lithium-ion batteries[J].Journal of Materials Chemistry A,2017,5(7):3667-3674.
[100] Gao W,Wang M,Ran C,et al.Facile one-
基本信息:
DOI:10.13289/j.issn.1009-6264.2022-0362
中图分类号:O643.36;O644.1
引用信息:
[1]姚海伟,王荟琪,蒲卓林等.二维材料/二氧化钛复合材料的光催化研究进展[J],2023,44(02):13-29.DOI:10.13289/j.issn.1009-6264.2022-0362.
基金信息:
陕西省重点研发计划(2021GY-213;2021GY-222)