nav emailalert searchbtn searchbox tablepage yinyongbenwen piczone journalimg journalInfo searchdiv qikanlogo popupnotification paper paperNew
2022, 07, v.43;No.265 28-37
AlCoCrFeNi高熵合金含量对Cu-10 mass%Sn复合材料摩擦磨损性能的影响
基金项目(Foundation):
邮箱(Email):
DOI: 10.13289/j.issn.1009-6264.2022-0030
摘要:

通过粉末冶金法制备了AlCoCrFeNi/Cu-10 mass%Sn复合材料,分别研究了室温和高温下AlCoCrFeNi高熵合金含量对复合材料摩擦磨损性能的影响,并分析了室温下复合材料的磨损机理。结果表明:不含AlCoCrFeNi高熵合金的复合材料的摩擦系数、磨损率均较大,磨痕表面凹坑较深,犁沟行程短且宽,磨损机理以粘着磨损为主;随着AlCoCrFeNi高熵合金含量增加,复合材料摩擦系数和磨损率先减小后增大,磨痕表面凹坑变浅,犁沟变得长且窄;当AlCoCrFeNi高熵合金的含量为30 mass%时,复合材料具有较大的摩擦系数(0.35)、最小的磨损率(0.408 mm3·N-1·m-1),此时磨损性能达到最佳,磨损机理由粘着磨损向疲劳磨损转变,当AlCoCrFeNi高熵合金的含量为40 mass%时,转变为轻微磨粒磨损。在100~400℃高温下,随着温度的升高,高熵合金含量为30 mass%的复合材料的摩擦系数和磨损率波动最小,摩擦系数稳定在0.35~0.47之间,磨损率在0.11~0.13 mm3·N-1·m-1之间,具备最佳的高温磨损性能。

Abstract:

AlCoCrFeNi/Cu-10 mass%Sn composites were prepared by powder metallurgy method. The effects of AlCoCrFeNi high entropy alloy content on friction and wear properties of the composites at room temperature and high temperature were investigated, and the wear mechanism of the composites at room temperature was analyzed. The results show that the friction coefficient and wear rate of the composites without AlCoCrFeNi high entropy alloy are larger, the pits on the surface of the wear scar are deep, the furrow stroke is short and wide, and the wear mechanism is mainly adhesive wear. With the increase of AlCoCrFeNi high entropy alloy content, the friction coefficient and the wear rate of the composites first decrease and then increase, the pits on the surface of the wear scar become shallower, and the furrows become longer and narrower. When the content of AlCoCrFeNi high entropy alloy is 30 mass%, the composites have a larger friction coefficient(0.35) and a minimum wear rate(0.41 mm3·N-1·m-1), its wear performance reaches the best, and the wear mechanism changes from adhesive wear to fatigue wear. When the content of AlCoCrFeNi high entropy alloy is 40 mass%, the wear mechanism of the composites changes to slight abrasive wear. At the high temperature of 100-400 ℃, with the increase of temperature, the friction coefficient and wear rate of the composites with AlCoCrFeNi content of 30 mass% fluctuate the least, the friction coefficient is stable between 0.35-0.47, and the wear rate is between 0.11-0.13 mm3·N-1·m-1, which has the best high temperature wear performance.

参考文献

[1] Kovalchenko A M,Fushchich O I,Danyluk S.The tribological properties and mechanism of wear of Cu-based sintered powder materials containing molybdenum disulfide and molybdenum diselenite under unlubricated sliding against copper[J].Wear,2012,290-291:106-123.

[2] 曲在纲,黄月初.粉末冶金摩擦材料[M].北京:冶金工业出版社,2004.QU Zai-gang,HUANG Yue-chu.Powder Metallurgy Friction Materials[M].Beijing:Metallurgical Industry Press,2004.

[3] Zhang P,Zhang L,Fu K,et al.Effects of different forms of Fe powder additives on the simulated braking performance of Cu-based friction materials for high-speed railway trains[J].Wear,2018,414-415.

[4] 刘滩,肖鹏,方华婵,等.石墨表面改性对铜基摩擦材料组织与性能的影响[J].粉末冶金材料科学与工程,2019,24(2):195-204.LIU Tan,XIAO Peng,FANG Hua-chan,et al.Effect of graphite surface modification on microstructure and properties of Cu-based friction materials Materials[J].Materials Science and Engineering of Powder Metallurgy,2019,24(2):195-204.

[5] 杨晓萍.石墨/锡青铜复合材料制备技术及摩擦磨损性能研究[D].沈阳:东北大学,2013.YANG Xiao-ping.Research on preparation technology and the friction and wear properties of the bronze-copper coated graphite composite[D].Shenyang:Northeastern University,2013.

[6] 刘伯威,杨阳,张逸帆.铜锡合金粉含量对汽车摩擦材料性能的影响[J].中国有色金属学报,2017,27(1):118-27.LIU Bo-wei,YANG yang,ZHANG Yi-fan.Effect of copper-tin alloy powder content on properties of automotive friction material[J].The Chinese Journal of Nonferrous Metals,2017,27(1):118-127.

[7] 孙忠刚,高飞,王德庆.锡对粉末冶金铜基摩擦材料摩擦磨损性能的影响[J].润滑与密封,2014,39(12):29-33.SUN Zhong-gang,GAO Fei,WANG De-qing.Effects of Sn content on friction and wear properties of copper matrix frictional material[J].Lubrication Engineering,2014,39(12):29-33.

[8] He J Y,Wang H,Huang H L,et al.A precipitation-hardened high-entropy alloy with outstanding tensile properties[J].Acta Materialia,2016,102:187-196.

[9] Cantor B,Chang I T H,Knight P,et al.Microstructural development in equiatomic multicomponent alloys[J].Materials Science and Engineering A,2004,375-377:213-218.

[10] Yeh J W,Chen S K,Lin S J,et al.Nanostructured high-entropy alloys with multiple principal elements:Novel alloy design concepts and outcomes[J].Advanced Engineering Materials,2004,6(5):299-303.

[11] Yeh J W.Alloy design strategies and future trends in high-entropy alloys[J].The Journal of The Minerals,Metals and Materials Society,2013,65(12):1759-1771.

[12] Miracle D B,Senkov O N.A critical review of high entropy alloys and related concepts[J].Acta Materialia,2017,122:448-511.

[13] Song H,Tian F,Hu Q M,et al.Local lattice distortion in high-entropy alloys[J].Physical Review Materials,2017,1(2):023404.

[14] Wang F J,Zhang Y,Chen G L.Atomic packing efficiency and phase transition in a high entropy alloy[J].Journal of Alloys and Compounds,2009,478(1/2):321-324.

[15] 吕昭平,雷智锋,黄海龙,等.高熵合金的变形行为及强韧化[J].金属学报,2018,54(11):1553-1566.Lü Zhao-ping,LEI Zhi-feng,HUANG Hai-long,et al.Deformation behavior and toughening of high-entropy alloys[J].Acta Metallurgica Sinica,2018,54(11):1553-1566.

[16] 郭策安,赵宗科,赵爽,等.电火花沉积AlCoCrFeNi高熵合金涂层的高速摩擦磨损性能[J].材料导报,2019,33(9):1462-1465.GUO Ce-an,ZHAO Zong-ke,ZHAO Shuang,et al.High-speed friction and wear performance of electrospark deposited AlCoCrFeNi high-entropy alloy coating[J].Materials Reports,2019,33(9):1462-1465.

[17] Chen J,Niu P,Wei T,et al.Fabrication and mechanical properties of AlCoNiCrFe high-entropy alloy particle reinforced Cu matrix composites[J].Journal of Alloys and Compounds,2015,649:630-634.

[18] 叶超,龙威,周小平.热压温度对AlFeCrCoCu/ZL109复合材料的组织与性能的影响[J].材料热处理学报,2021,42(3):22-29.YE Chao,LONG Wei,ZHOU Xiao-ping.Effects of hot-pressing temperature on microstructure and properties of AlFeCrCoCu/ZL109 composites[J].Transactions of Materials and Heat Treatment,2021,42(3):22-29.

[19] 杨博.高熵合金增强铜基复合材料的制备及性能研究[D].大连:大连交通大学,2019.YANG Bo.Preparation and properties of copper-based composites reinforced with high entropy alloys[D].Dalian:Dalian Jiaotong University,2019.

[20] 李晓东.激光冲击AlCoCrFeNi高熵合金微观组织及力学性能的研究[D].镇江:江苏大学,2019.LI Xiao-dong.Research on the microstructure and mechanical properties of laser shock processing AlCoCrFeNi high entropy alloy[D].Zhenjiang:Jiangsu University,2019.

[21] 高原.铜合金的磨损与腐蚀行为研究[D].大连:大连理工大学,2015.GAO Yuan.The research on wear and corrosion behavior of copper alloy[D].Dalian:Dalian University of Technology,2015.

[22] 侯文英.摩擦磨损与润滑[M].北京:机械工业出版社,2012.HOU Wen-ying.Friction,Wear and Lubrication[M].Beijing:Machinery Industry Press,2012.

[23] 王振廷,孟君晟.摩擦磨损与耐磨材料[M].哈尔滨:哈尔滨工业大学出版社,2013.WANG Zhen-ting,MENG Jun-shen.Frictional Wear and Wear Resistant Materials[M].Harbin:Harbin Institute of Technology Press,2013.

[24] 牛宇生,郝秀清,孙鹏程,等.温度对表面摩擦磨损性能影响的研究进展[J].中国表面工程,2020,33(6):1-22.NIU Yu-sheng,HAO Xiu-qing,SUN Peng-cheng,et al.Perspective of influence of temperature on friction and wear behavior[J].China Surface Engineering,2020,33(6):1-22.

[25] 熊党生,李建亮.高温摩擦磨损与润滑[M].西安:西北工业大学出版社,2013.XIONG Dang-sheng,LI Jian-liang.High Temperature Friction Wear and Lubrication[M].Xi'an:Northwestern Polytechnical University Press,2013.

基本信息:

DOI:10.13289/j.issn.1009-6264.2022-0030

中图分类号:TB331

引用信息:

[1]宋之锴,吴浩宇,龙威等.AlCoCrFeNi高熵合金含量对Cu-10 mass%Sn复合材料摩擦磨损性能的影响[J],2022,43(07):28-37.DOI:10.13289/j.issn.1009-6264.2022-0030.

基金信息:

检 索 高级检索

引用

GB/T 7714-2015 格式引文
MLA格式引文
APA格式引文