413 | 3 | 53 |
下载次数 | 被引频次 | 阅读次数 |
高温力学性能优异的难熔高熵合金在航空发动机热端部件制造中展示出广阔的应用前景。首先,采用真空电弧熔炼法制备了20种NbTiMoVHf(Zr)Si系难熔高熵合金,并通过维氏硬度和拉伸性能测试确定了具有较好力学性能的合金样品,随后利用X射线衍射和电子背散射衍射等研究了其微结构特征。结果表明:NbTiMoVZrSi系高熵合金的力学性能更优,维氏硬度可达723 HV,抗拉强度可达219 MPa;随着Si含量增加,合金的晶粒尺寸减小,析出更多硬质硅化物,且硬度最高的样品小角度晶界含量较高。
Abstract:The refractory high-entropy alloys with excellent high temperature mechanical properties show a great potential in the manufacturing of hot end components of aeroengines. First, 20 kinds of NbTiMoVHf(Zr) Si refractory high-entropy alloys were prepared by vacuum arc melting, and the alloy samples with good mechanical properties were determined by Vickers hardness and tensile properties tests. Then, their microstructure features were studied by X-ray diffraction and electron backscatter diffraction technique. The results show that the NbTiMoVZrSi high-entropy alloy has higher mechanical properties. The Vickers hardness and the tensile strength can reach 723 HV and 219 MPa, respectively. With the increase of Si content, the grain size of the alloy decreases and more hard silicides are precipitated. The sample with the highest hardness has relatively high proportion of low angle grain boundaries.
[1] Cantor B,Chang I T H,Knight P,et al.Microstructural development in equiatomic multicomponent alloys[J].Materials Science and Engineering A,2004,375-377:213-218.
[2] Yeh J W,Chen S K,Lin S J,et al.Nanostructured high-entropy alloys with multiple principal elements:Novel alloy design concepts and outcomes[J].Advanced Engineering Materials,2004,6(5):299-303.
[3] Miracle D B,Senkov O N.A critical review of high entropy alloys and related concepts[J].Acta Materialia,2017,122:448-511.
[4] 王晓鹏,孔凡涛.高熵合金及其他高熵材料研究新进展[J].航空材料学报,2019,39(6):1-19.WANG Xiao-peng,KONG Fan-tao.Resent development in high-entropy alloys and other high-entropy materials[J].Journal of Aeronautical Materials,2019,39(6):1-19.
[5] Zhang W,Liaw P K,Zhang Y.Science and technology in high-entropy alloys[J].Science China Materials,2018,61(1):2-22.
[6] Yeh J W.Recent progress in high-entropy alloys[J].European Journal of Control,2006,31:633-648.
[7] Zhang Y,Zuo T T,Tang Z,et al.Microstructures and properties of high-entropy alloys[J].Progress in Materials Science,2014,61:1-93.
[8] Lu Z P,Wang H,Chen M W,et al.An assessment on the future development of high-entropy alloys:Summary from a recent workshop[J].Intermetallics,2015,66:67-76.
[9] 李安敏,张喜燕.多主元高熵合金的研究进展[J].材料导报,2007(11):56-59.LI An-min,ZHANG Xi-yan.Research porgress in high-entropy alloy with multi-principal elements[J].Materials Review,2007(11):56-59.
[10] 宗乐,徐流杰,罗春阳,等.难熔高熵合金:制备方法与性能综述[J].工程科学学报,2021,43(11):1459-1473.ZONG Le,XU Liu-jie,LUO Chun-yang,et al.Refractory high-entropy alloys:A review of preparation methods and properties[J].Chinese Journal of Engineering,2021,43(11):1459-1473.
[11] 夏铭,孙博,王鑫,等.高熵合金增材制造研究现状与展望[J].材料导报,2021,35(13):13119-13127.XIA Ming,SUN Bo,WANG Xin,et al.Research progress and prospects of high-entropy alloys made by additive manufacturing[J].Materials Reports,2021,35(13):13119-13127.
[12] 鲁一荻,张骁勇,侯硕,等.高熵合金的发展及工业应用展望[J].稀有金属材料与工程,2021,50(1):333-341.LU Yi-di,ZHANG Xiao-yong,HOU Shuo,et al.Perspective on industrial applications and research progress of high entropy alloys[J].Rare Metal Materials and Engineering,2021,50(1):333-341.
[13] 闫薛卉,张勇.高熵合金的制备成形加工工艺[J].精密成形工程,2022,14(1):19-27.YAN Xue-hui,ZHANG Yong.Preparation and forming process of high-entropy alloy[J].Journal of Netshape Forming Engineering,2022,14(1):19-27.
[14] Senkov O N,Wilks G B,Miracle D B,et al.Refractory high-entropy alloys[J].Intermetallics,2010,18(9):1758-1765.
[15] Lin C M,Juan C C,Chang C H,et al.Effect of Al addition on mechanical properties and microstructure of refractory AlxHfNbTaTiZr alloys[J].Journal of Alloys and Compounds,2015,624:100-107.
[16] Senkov O N,Jensen J K,Pilchak A L,et al.Compositional variation effects on the microstructure and properties of a refractory high-entropy superalloy AlMo0.5NbTa0.5TiZr[J].Materials & Design,2018,139:498-511.
[17] 刘张全,乔珺威.难熔高熵合金的研究进展[J].中国材料进展,2019,38(8):768-767.LIU Zhang-quan,QIAO Jun-wei.Research progress of refractory high-entropy alloys[J].Materials China,2019,38(8):768-767.
[18] Liu Y,Zhang Y,Zhang H,et al.Microstructure and mechanical properties of refractory HfMo0.5NbTiV0.5Six high-entropy composites[J].Journal of Alloys and Compounds,2017,694:869-876.
[19] 刘昊,高强,郝敬宾,等.激光熔覆AlCoCrFeNiSix高熵合金涂层的微观组织及耐蚀性能[J].稀有金属材料与工程,2022,51(6):2199-2208.LIU Hao,GAO Qiang,HAO Jing-bin,et al.Microstructure and corrosion resistance of AlCoCrFeNiSix high-entropy alloy coating by laser cladding[J].Rare Metal Materials and Engineering,2022,51(6):2199-2208.
[20] 薛彦均,尉文超,王毛球,等.Si对FeMoCrVTiSix高熵合金组织和力学性能的影响[J].特种铸造及有色合金,2020,40(1):112-116.XUE Yan-jun,WEI Wen-chao,WANG Mao-qiu,et al.Effects of Si on microstructure and mechanical properties of FeMoCrVTiSix high entropy alloy[J].Special Casting & Nonferrous Alloys,2020,40(1):112-116.
[21] 石德珂.材料科学基础[M].第2版.北京:机械工业出版社,2003.
[22] Tian D,Zhou C J,He J H.Hall-Petch effect and inverse Hall-Petch effect:A fractal unification[J].Fractals,2018,26(6):1850083.
[23] 贾少伟,张郑,王文,等.超细晶/纳米晶反Hall-Petch变形机制最新研究进展[J].材料导报,2015,29(23):114-118.JIA Shao-wei,ZHANG Zheng,WANG Wen,et al.The current situation of deformation mechanism on inverse Hall-Petch in crystalline material[J].Materials Review,2015,29(23):114-118.
[24] Zhang H,Lin X,Yu Y,et al.Positive modification on the mechanical,tribological and oxidation properties of AlCrNbSiN coatings by regulating the Nb/Si-doping ratio[J].Ceramics International,2021,47(22):31603-31616.
[25] Tavares A M G,Ramos W S,de Blas J C G,et al.Influence of Si addition on the microstructure and mechanical properties of Ti-35Nb alloy for applications in orthopedic implants[J].Journal of the Mechanical Behavior of Biomedical Materials,2015,51:74-87.
[26] Kondo S,Mitsuma T,Shibata N,et al.Direct observation of individual dislocation interaction processes with grain boundaries[J].Science Advances,2016,2(11):1-7.
[27] 李智慧,师俊平,汤安民.金属材料脆性断裂机理的实验研究[J].应用力学学报,2012,29(1):48-53.LI Zhi-hui,SHI Jun-ping,TANG An-min.Experimental research on the brittle fracture mechanism in metal material[J].Chinese Journal of Applied Mechanics,2012,29(1):48-53.
[28] Yu J L,Weng X D,Zhu N L,et al.Mechanical properties and fracture behavior of an Nb-Silicide in situ composite[J].Intermetallics,2017,90:135-139.
[29] 李来平,喻吉良,张如,等.Nb-16Si-10Ti-10Mo-5Hf原位复合材料拉伸性能及其变形机制[J].稀有金属材料与工程,2016,45(9):2409-2413.LI Lai-ping,YU Ji-liang,ZHANG Ru,et al.Tensile properties and deformation mechanism of the Nb-16Si-10Ti-10Mo-5Hf in situ composite[J].Rare Metal Materials and Engineering,2016,45(9):2409-2413.
[30] 雷志立,鲁世强,邓莉萍.Si对NbCr2/Cr合金组织及性能的影响[J].特种铸造及有色合金,2018,38(2):128-131.LEI Li-zhi,LU Shi-qiang,DENG Li-ping.Effects of alloying element Si on microstructure and properties of NbCr2/Cr alloy[J].Special Casting & Nonferrous Alloys,2018,38(2):128-131.
基本信息:
DOI:10.13289/j.issn.1009-6264.2022-0474
中图分类号:TG139
引用信息:
[1]林颖,胡雅楠,吴圣川等.基于成分与力学性能调控的NbTiMoVHf(Zr)Si系难熔高熵合金优化[J],2023,44(04):121-128.DOI:10.13289/j.issn.1009-6264.2022-0474.
基金信息:
国家自然科学基金面上项目(51875541);; 中央高校基本科研项目(2682022CX052)