2,659 | 44 | 366 |
下载次数 | 被引频次 | 阅读次数 |
铜合金材料作为高新技术产业的主流材料,需同时具备高强高导的性能。但是根据不同的应用环境,在保持高导电率的前提下如何选择合适的强化方法是制备铜合金的瓶颈。据研究可知,合金化法(形变强化、时效强化、固溶强化、细晶强化)和复合材料法(人工复合材料法、自身复合材料法)可以提高铜合金材料强度,但对其导电率有一定的影响。通过添加稀土元素、快速凝固法或大塑性变形等强化方法,有望获得高强度、高导电率的铜合金。本文着重探讨了合金化法和复合材料法的强化机理及其优缺点,并对铜合金的研究热点进行讨论和展望。
Abstract:As the mainstream material of high-tech industry, copper alloy should have high strength and high conductivity at the same time. However, according to the different application environment, how to choose the appropriate strengthening method under the premise of maintaining high conductivity is the bottleneck of preparing copper alloy. According to the research, the alloying method(deformation strengthening, aging strengthening, solution strengthening, fine grain strengthening) and the composite material method(artificial composite method, self composite method) can improve the strength of the copper alloy, but have a certain impact on its conductivity. The copper alloy with high strength and high conductivity can be obtained by adding rare earth elements, rapid solidification or large plastic deformation. In this paper, the strengthening mechanism, advantages and disadvantages of alloying method and composite method are discussed, and the research focus of the copper alloy are discussed and prospected.
[1] Zhang Y,Volinsky,Alex A,et al.Deformation behavior and microstructure evolution of the Cu-Ni-Si-Ag alloy during hot compression[J].Metallurgical and Transactions A,2015,46(12):5871-5876.
[2] Wang Y P,Fu R D,Li Y J,et al.A high strength and high electrical conductivity Cu-Cr-Zr alloy fabricated by cryorolling and intermediate aging treatment[J].Materials Science and Engineering A,2017,680:108-114.
[3] Xu G L,Mi X J,Peng L J,et al.High-temperature deformation behavior of the Cu-0.21Cr-0.12Ag alloy made by upward continuous casting[J].Research Express,2019,6(4):046540
[4] Islamgaliev R K Nesterov K M,Valiev R Z.Structure,strength,and electric conductivity of a Cu-Cr copper-based alloy subjected to severe plastic deformation[J].The Physics of Metals and Metallography,2015,116(2):209-218.
[5] 张生龙,尹志民.高强高导铜合金设计思路及其应用[J].材料导报,2003(11):26-29.ZHANG Sheng-long,YIN Zhi-min.Design ideas and application of high strength and high conductivity copper alloy[J].Materials Reports,2003(11):26-29.
[6] 李文生,王智平,路阳,等.高强铜基合金材料的研究与应用现状[J].中国有色金属学报,2002,12(2):30-34.LI Wen-sheng,WANG Zhi-ping,LU Yang,et al.Research and application status of high strength copper base alloy materials[J].The Chinese Journal of Nonferrous Metals,2002,12(2):30-34.
[7] Maki K,Ito Y,Matsunaga H,et al.Solid-solution copper alloys with high strength and high electrical conductivity[J].Scripta Materialia,2013,68(10):777-780.
[8] Kri C,Srinath J,Jha A K,et al.Microstructure and properties of a high-strength Cu-Ni-Si-Co-Zr alloy[J].Journal of Materials Engineering and Performance,2013,22 (7):2115-2120.
[9] 刘瑞蕊,周海涛,周啸,等.高强高导铜合金的研究现状及发展趋势[J].材料导报,2012(19):100-105.LIU Rui-rui,ZHOU Hai-tao,ZHOU Xiao,et al.Research status and development trend of high strength and high conductivity copper alloys[J].Materials Reports,2012(19):100-105.
[10] 李周,肖柱,姜雁斌,等.高强导电铜合金的成分设计、相变与制备[J].中国有色金属学报,2019,29(9):2009-2049.LI Zhou,XIAO Zhu,JIANG Yan-bin,et al.Composition design phase transition and preparation of high strength conductive copper alloy[J].The Chinese Journal of Nonferrous Metals,2019,29(9):2009-2049.
[11] 侯绿林,尹振兴,甘春雷,等.引线框架用Cu-Ni-Si合金及其制备加工工艺的研究进展[J].材料研究与应用,2020,14(1):59-67.HOU Lü-lin,YIN Zhen-xing,GAN Chun-lei,et al.Research progress of Cu-Ni-Si alloy for lead frame and its fabrication process[J].Materials Research and Application,2020,14(1):59-67.
[12] Lu D P,Wang J,Lu L,et al.Effect of boron and cerium on microstructures and properties of Cu-Fe-P alloy[J].Journal of Rare Earths,2006,24(5):602-606.
[13] Li H Q,Xie S S,Mi X J,et al.Influence of cerium and yttrium on Cu-Cr-Zr alloys[J].Journal of Rare Earths,2006,24(12):367-371.
[14] 韩力涛.高性能纳米Cu-Fe、Cu-Fe-X(Cr、Zr、P)合金的制备、结构及性能研究[D].合肥:中国科学技术大学,2019.HAN Li-tao.Preparation,structure and properties of high performance Cu-Fe,Cu-Fe (Cr,Zr,P) nano-alloys[D].Hefei:University of Science and Technology of China,2019.
[15] Wang H S,Chen H G,Gu J W,et al.Effects of heat treatment processes on the microstructures and properties of powder metallurgy produced Cu-Ni-Si-Cr alloy[J].Materials Science and Engineering A,2014,619:221-227.
[16] 刘海斌,郑月红,喇培清,等.轧制与时效处理Cu-Cr-Zr合金组织和性能的影响[J].中国有色金属学报,2020,30(9):2075-2083.LIU Hai-bin,ZHENG Yue-hong,LA Pei-qing,et al.Effect of rolling and aging treatment on microstructure and properties of Cu-Cr-Zr alloy[J].The Chinese Journal of Nonferrous Metals,2020,30(9):2075-2083.
[17] 张永安,熊柏青,刘红伟,等.Cu-Cr25触头材料的喷射成形制备及其组织分析[J].中国有色金属学报,2003,13(5):1067-1070.ZHANG Yong-an,XIONG Bai-qing,LIU Hong-wei,et al.Preparation and microstructure analysis of Cu-Cr25 contact materials by spray forming[J].The Chinese Journal of Nonferrous Metals,2003,13(5):1067-1070.
[18] 杜三明,刘超,蔡宏章,等.等离子喷涂Cu-Al2O3复合涂层制备及摩擦学性能研究[J].表面技术,2019,48(3):134-140.DU San-ming,LIU Chao,CAI Hong-zhang,et al.Preparation and tribological properties of plasma sprayed Cu-Al2O3 composite coating[J].Surface Technology,2019,48(3):134-140.
[19] 薛彦庆,郝启堂,魏典,等.原位自生TiB2/Al-4.5Cu复合材料微观组织和力学性能[J].材料工程,2021,49(2):97-104.XUE Yan-qing,HAO Qi-tang,WEI Dian,et al.Microstructure and mechanical properties of in-situ autogenous TiB2/Al-4.5Cu composites[J].Journal of Materials Engineering,2021,49(2):97-104.
[20] 汪峰涛,吴玉程,王涂根,等.粉末冶金法制备纳米颗粒增强Cu基复合材料[J].材料热处理学报,2007,28(5):10-14.WANG Feng-tao,WU Yu-cheng,WANG Tu-gen,et al.Preparation of Cu matrix composites by powder metallurgy[J].Transactions of Materials and Heat Treatment,2007,28(5):10-14.
[21] 黄文学.高强高导铜合金的新型制备方法与发展趋势[J].世界有色金属,2019(10):166-167.HUANG Wen-xue.Novel preparation method and development trend of high strength and high conductivity copper alloy[J].World Nonferrous Metals,2019(10):166-167.
[22] 郭明星,汪明朴,李周,等.机械合金化制备不同粒子弥散强化铜合金的研究[J].稀有金属,2004,28(5):926-930.GUO Ming-xing,WANG Ming-pu,LI Zhou,et al.Study on preparation of different particles dispersion strengthened copper alloy by mechanical alloying[J].Rare Metals,2004,28 (5):926-930.
[23] 卓海鸥,唐建成,叶楠.液相原位反应法制备 Cu-Y2O3复合材料[J].金属学报,2012,48(12):1474-1478.ZHUO Hai-ou,TANG Jian-cheng,YE Nan.Preparation of Cu-Y2O3 composites by in-situ liquid phase reaction[J].Acta Metallurgica Sinica,2012,48 (12):1474-1478.
[24] 曹丽丽,崔洪芝,吴杰,等.原位反应合成(TiB2-Al2O3)/NiAl复合材料的微观组织[J].中国有色金属学报2012,22(10):2790-2796.CAO Li-li,CUI Hong-zhi,WU Jie,et al.Microstructure of TiB2-Al2O3/NiAl composites synthesized by in-situ reaction[J].The Chinese Journal of Nonferrous Metals,2012,22(10):2790-2796.
[25] Cao L L,C H Z,W J,et al.Microstructure of TiB2-Al2O3/NiAl composite synthesized by in-situ reaction[J].Chinese Journal of Nonferrous Metals,2012,22 (10):2790-2796.
[26] Ren F Z,Zhi A J,Zhang D W,et al.Preparation of Cu-Al2O3 bulk nano-composites by combining Cu-Al alloy sheets internal oxidation with hot extrusion[J].Journal of Alloys and Compounds,2015,633:323-328.
[27] Tian B H,Liu P,Song K X,et al.Microstructure and properties at elevated temperature of a nano-Al2O3 particles dispersion-strengthened copper base composite[J].Materials Science and Engineering A,2006,435:705-710.
[28] Sauvage X,Jessner P,Vurpillot F,et al.Nanostructure and properties of a Cu-Cr composite processed by severe plastic deformation[J].Scripta Materialia,2008,58(12):1125-1128.
[29] Lee J H,Han S Z,Jung H M,et al.Microstructure evolution in Cu-1.54 wt% Cr alloy during directional solidification[J].Journal of Crystal Growth,2013,362:58-61.
[30] 曾松岩,张二林,李庆春.一种新型的制备金属基复合材料的方法 — 接触反应法[J].宇航材料工艺,1995(5):27-30.ZENG Song-yan,ZHANG Er-lin,LI Qing-chun.A new method for preparation of metal matrix composites — contact reaction method[J].Aerospace Materials and Technology,1995(5):27-30.
[31] Liang D,Mi X J,Peng L J,et al.Relationship between microstructure and properties of Cu-Cr-Ag alloy[J].Materials,2020,13(3):1613-1617.
[32] Bernasconi R,Hart J L,Lang A C,et al.Structural properties of electrodeposited Cu-Ag alloys[J].Electrochim Acta,2017,251:475-481.
[33] Wu Z W,Chen Y,Meng L.Effects of rare earth elements on annealing characteristics of Cu-6wt% Fe composites[J].Journal of Alloys and Compounds,2009,477(1):198-204.
[34] 田伟,胡梦楠,孙玥,等.稀土元素对铝铜合金性能影响的研究进展[J].材料热处理学报,2019,40(3):12-19.TIAN Wei,HU Meng-nan,SUN Yue,et al.Research progress on the effect of rare earth elements on the properties of Al-Cu alloy[J].Transactions of Materials and Heat Treatment,2019,40(3):12-19.
[35] Chen Y,Li H,Zhang S H,et al.Absorptivity and purification of La in as-cast pure copper[J].Materials Science and Technology,2016,32(17):1757-1762.
[36] 高卡,郭晓琴,张锐.单辊快速凝固法制备Co-Cu-Pb合金颗粒的结构与形成机制[J].粉末冶金材料科学与工程,2016,21(6):862-869.GAO Ka,GUO Xiao-qin,ZHANG Rui.Structure and formation mechanism of Co-Cu-Pb alloy particles prepared by single-roll rapid solidification[J].Materials Science and Engineering of Powder Metallurgy,2016,21(6):862-869.
[37] 张朝民,宋克兴,程楚,等.冷拉拔导致的大塑性变形对定向凝固Cu-4 mass%Ag合金组织和性能的影响[J].材料热处理学报,2020,41(12):49-56.ZHANG Chao-min,SONG Ke-xing,CHENG Chu,et al.Effect of large plastic deformation induced by cold drawing on microstructure and properties of directionally solidified Cu-4 mass%Ag alloy[J].Transactions of Materials and Heat Treatment,2020,41(12):49-56.
[38] 钟海燕,袁孚胜.高强高导铜铬锆合金的市场现状分析[J].有色冶金设计与研究,2019,40(1):28-30.ZHANG Hai-yan.YUAN Fu-sheng.Analysis of market status of high strength and high conductivity Cu-Cr-Zr alloy[J].Nonferrous Metals Engineering and Research,2019,40(1):28-30.
基本信息:
DOI:10.13289/j.issn.1009-6264.2021-0191
中图分类号:TG146.11
引用信息:
[1]代雪琴,贾淑果,范俊玲等.高强高导铜合金的强化机理与研究热点[J],2021,42(10):18-26.DOI:10.13289/j.issn.1009-6264.2021-0191.
基金信息:
河南省创新引领专项(191110210400);; 河南省自然科学基金(202300410139);; 中国工程科技发展战略河南研究院战略咨询研究项目(2021HENZDA02);; 河南省重点研发与推广专项(212102210441);; 河南省高等学校重点科研项目(19A430012)