512 | 8 | 319 |
下载次数 | 被引频次 | 阅读次数 |
氧化物弥散强化钢(ODS钢)因其内部高密度的氧化物弥散颗粒而具有良好的抗高温蠕变特性和耐辐照性能,是目前核能系统关键候选材料。以铁粉与纳米Y2O3粉末混合而制备的金属型药芯丝材为原料,采用电弧熔丝增材制造(WAAM)技术成功制备了ODS钢,研究了成形工艺对试样尺寸特性和微观组织的影响。结果表明:由于电弧熔丝增材制造具有微熔池冶炼特性及快速凝固的特点,所制备的ODS钢基体的组织为晶粒尺寸均匀、平均晶粒尺寸在40μm以下的等轴晶组织,晶粒内部弥散分布着尺寸在100 nm以下的Y2O3颗粒。所制备的薄壁试样组织均匀性较好,硬度分布较为均匀,试样的拉伸强度为472 MPa,伸长率为37%。
Abstract:Oxide dispersion strengthened steel(ODS steel) has good high-temperature creep resistance and radiation resistance due to its high-density oxide dispersed particles. It is a key candidate material for nuclear power system. ODS steel was successfully prepared by wire arc additive manufacturing(WAAM) technology using metal mold core wire prepared by mixing iron powder and nano Y2O3 powder as raw materials. The effects of forming process on dimensional characteristics and microstructure of the sample were studied. The results show that due to the characteristics of micro bath smelting and rapid solidification of the WAAM, the microstructure of the ODS steel matrix is equiaxed structure with uniform grain size, and its average grain size is less than 40 μm, and the Y2O3 nanoparticles with a size of less than 100 nm are dispersed in the grain. The prepared thin-walled sample has good microstructure uniformity and uniform hardness distribution, and its tensile strength and elongation are 472 MPa and 37%, respectively.
[1] Kimura A,Kasada R,Iwata N,et al.Development of Al added high-Cr ODS steels for fuel cladding of next generation nuclear systems[J].Journal of Nuclear Materials,2011,417:176-179.
[2] Shi Y N,Lu Z,Yu L,et al.Microstructure and tensile properties of Zr-containing ODS-FeCrAl alloy fabricated by laser additive manufacturing[J].Materials Science and Engineering A,2020,774:138937.
[3] Massey C P,Dryepondt S N,Edmondson P D,et al.Influence of mechanical alloying and extrusion conditions on the microstructure and tensile properties of low-Cr ODS FeCrAl alloys[J].Journal of Nuclear Materials,2018,512:227-238.
[4] Grning T,Klimenkov M,Rieth M,et al.Long-term stability of the microstructure of austenitic ODS steel rods produced with a carbon-containing process control agent[J].Journal of Nuclear Materials,2019,523:111-120.
[5] Siska F,Stratil L,Hadraba H,et al.Strengthening mechanisms of different oxide particles in 9Cr ODS steel at high temperatures[J].Materials Science and Engineering A,2018,732:112-119.
[6] Dash M K,Mythili R,Ravi R,et al.Microstructure and mechanical properties of oxide dispersion strengthened 18Cr-ferritic steel consolidated by spark plasma sintering[J].Materials Science and Engineering A,2018,736:137-147.
[7] Li Z Y,Lu Z,Xie R,et al.Effects of Y2O3,La2O3 and CeO2 additions on microstructure and mechanical properties of 14Cr-ODS ferrite alloys produced by spark plasma sintering[J].Fusion Engineering and Design,2017,121:159-166.
[8] Wu S J,Li J,Li W H,et al.Characterization of oxide dispersoids and mechanical properties of 14Cr-ODS FeCrAl alloys[J].Journal of Alloys and Compounds,2020,814:152282.
[9] 谢锐,吕铮,钱峰,等.14Cr氧化物弥散强化钢的组织与性能研究[J].热加工工艺,2021,50(12):63-67.XIE Rui,Lü Zheng,QIAN Feng,et al.Study on microstructure and mechanical properties of 14Cr oxide dispersion strengthened steel[J].Hot Working Technology,2021,50(12):63-67.
[10] 徐海健,沙孝春,孟劲松,等.15Cr-ODS钢的微观组织及力学性能[J].材料热处理学报,2019,40(1):107-111.XU Hai-jian,SHA Xiao-chun,MENG Jing-song,et al.Microstructure and mechanical properties of 15Cr oxide dispersion strengthened steel[J].Transactions of Materials and Heat Treatment,2019,40(1):107-111.
[11] Li Z,Lu Z,Xie R,et al.Effect of spark plasma sintering temperature on microstructure and mechanical properties of 14Cr-ODS ferritic steels[J].Materials Science and Engineering A,2016,660:52-60.
[12] 张晓新,洪志远,宋刚,等.液态金属法制备ODS钢的研究进展[J].材料热处理学报,2019,40(11):69-84.ZHANG Xiao-xin,HONG Zhi-yuan,SONG Gang,et al.Research progress of ODS steels fabricated by liquid metal method[J].Transactions of Materials and Heat Treatment,2019,40(11):69-84.
[13] Riabov D,Rashidi M,Hryha E,et al.Effect of the powder feedstock on the oxide dispersion strengthening of 316L stainless steel produced by laser powder bed fusion[J].Materials Characterization,2020,169:110582.
[14] Mirzababaei S,Ghayoor M,Doyle R P,et al.In-situ manufacturing of ODS FeCrAlY alloy via laser powder bed fusion[J].Materials Letters,2021,284:129046.
[15] Boegelein T,Louvis E,Dawson K,et al.Characterisation of a complex thin walled structure fabricated by selective laser melting using a ferritic oxide dispersion strengthened steel[J].Materials Characterization,2016,112:30-40.
[16] Shi Y N,Lu Z,Xu H J,et al.Microstructure characterization and mechanical properties of laser additive manufactured oxide dispersion strengthened Fe-9Cr alloy[J].Journal of Alloys and Compounds,2019,791:121-133.
[17] Ghayoor M,Lee K,He Y J,et al.Selective laser melting of austenitic oxide dispersion strengthened steel:Processing,microstructural evolution and strengthening mechanisms[J].Materials Science and Engineering A,2020,788:139532.
[18] Doate-Buendia C,Kürnsteiner P,Stern F,et al.Microstructure formation and mechanical properties of ODS steels built by laser additive manufacturing of nanoparticle coated iron-chromium powders[J].Acta Materialia,2021,206:116566.
[19] Boegelein T,Dryepondt S N,Pandey A,et al.Mechanical response and deformation mechanisms of ferritic oxide dispersion strengthened steel structures produced by selective laser melting[J].Acta Materialia,2015,87:201-215.
[20] Wang G W,Huang L,Liu Z C,et al.Process optimization and mechanical properties of oxide dispersion strengthened nickel-based superalloy by selective laser melting[J].Materials & Design,2020,188:108418.
[21] Derekar K S.A review of wire arc additive manufacturing and advances in wire arc additive manufacturing of aluminium[J].Materials Science and Technology,2018,34(8):895-916.
[22] 禹润缜,赵峰,余圣甫,等.电弧熔丝增材制造ER2319铝堆积金属的组织性能及T6热处理工艺优化[J].金属热处理,2021,46(4):49-59.YU Run-zhen,ZHAO Feng,YU Sheng-fu,et al.Microstructure,properties and T6 heat treatment process optimization for wire arc additive manufacturing ER2319 aluminum deposited metals[J].Heat Treatment of Metals,2021,46(4):49-59.
[23] 李岩,苏辰,张冀翔.电弧熔丝增材制造综述:物理过程、研究现状、应用情况及发展趋势[J].焊接,2020(9):31-37.LI Yan,SU Chen,ZHANG Ji-xiang.A review of wire arc additive manufacturing from aspects of physical process,research status,application situation and development trend[J].Welding and Joining,2020(9):31-37.
[24] 张文明,韩嘉伟.2319铝合金电弧增材制造成型和组织[J].沈阳大学学报(自然科学版),2020,32(3):194-199.ZHANG Wen-ming,HAN Jia-wei.2319 aluminum alloy arc additive manufacturing forming and microstructure[J].Journal of Shenyang University(Natural Science),2020,32(3):194-199.
[25] 施瀚超,胡立杰,郑涛.电流对电弧增材制造AZ31镁合金成型与组织性能的影响[J].铸造技术,2018,39(10):2285-2288.SHI Han-chao,HU Li-jie,ZHENG Tao.Effects of electric current on the forming,microstructure and mechanical properties of AZ31 alloy prepared by wire arc additive manufacturing[J].Foundry Technology,2018,39(10):2285-2288.
基本信息:
DOI:10.13289/j.issn.1009-6264.2021-0537
中图分类号:TG142.1
引用信息:
[1]易果强,周亚举,张鹏等.电弧熔丝增材制造ODS钢的成型工艺及组织性能[J],2022,43(06):128-136.DOI:10.13289/j.issn.1009-6264.2021-0537.
基金信息:
国家重点基础研究发展计划(2018YFE0306104)