nav emailalert searchbtn searchbox tablepage yinyongbenwen piczone journalimg journalInfo searchdiv qikanlogo popupnotification paper paperNew
2021, 02, v.42;No.248 98-102
中碳25Mn钢低温冲击断裂过程中的变形机制
基金项目(Foundation): 河北省高端钢铁冶金联合研究基金项目(E2019105101);; 唐山市科技计划项目(18130218a)
邮箱(Email):
DOI: 10.13289/j.issn.1009-6264.2020-0337
摘要:

测定了中碳25Mn钢在不同温度下的冲击吸收能量,观察了断口处的变形组织特征,并结合层错能计算分析,讨论了实验钢在不同温度下的变形机制。结果表明:冲击断口处的组织中均含有大量的形变孪晶,但随着变形温度的降低,层错能也随之降低,有利于孪晶的形成,导致变形组织中的孪晶数量有所增加,此时实验钢的变形机制以TWIP为主;当温度降至-196℃后,层错能进一步降低,变形过程中发生形变诱导相变,马氏体的产生导致钢的韧性显著降低。

Abstract:

The impact absorbed energy of medium carbon 25 Mn steel at different temperatures was measured, the deformation microstructure characteristics near impact fracture surface were observed, and the deformation mechanism of the experimental steel at different temperatures was discussed by combining with the calculation and analysis of stacking fault energy. The results show that there are a lot of deformation twins in the microstructure near the impact fracture surface. With the decrease of deformation temperature, the stacking fault energy decreases, which is beneficial to the formation of twins, and lead to the increasing of the number of twins in the deformed microstructure, and the deformation mechanism of the experimental steel is mainly TWIP. When the temperature decreases to-196 ℃, the stacking fault energy further decreases, the deformation induced transformation occurs during deformation, and the formation of martensite results in a significant decrease in the toughness of the experimental steel.

参考文献

[1] Wang D J,Wang Y H,Liu L G,et al.Phase transformation behavior and microstructure characterization of 9Ni cryogenic steel[J].Advanced Materials Research,2012,1671:1183-1187.

[2] Kubo N,Takata M,Yamashita M,et al.Development of 7%Ni-TMCP steel plate for LNG storage tanks[J].Quarterly Journal of the Japan Weldging Society,2010,28(1):130-140.

[3] 许立雄,武会宾,牟丹.两相区淬火对7Ni钢微观组织和力学性能的影响[J].材料工程,2018,46(8):113-119.XU Li-xiong,WU Hui-bin,MOU Dan.Effect of quenching in dual-phase region on microstructure and mechanical properties of 7Ni steel[J].Journal of Materials Engineering,2018,46(8):113-119.

[4] 朱绪祥,刘东升.低C含7.7%Ni低温钢经两相区淬火后的组织性能[J].钢铁,2013,48(11):72-78.ZHU Xu-xiang,LIU Dong-sheng.Microstructure and mechanical properties of a low carbon 7.7%Ni steel subjected to intercritical quenching[J].Iron and Steel,2013,48(11):72-78.

[5] Sohn S S,Hong S,Lee J,et al.Effects of Mn and Al contents on cryogenic-temperature tensile and charpy impact properties in four austenitic high-Mn steels[J].Acta Materialia,2015,100:39-52.

[6] Umezawa O,Nagai K.Deformation structure and subsurface fatigue crack generation in austenitic steels at low temperature[J].Metallurgical and Materials Transactions A,1998,29(3):809-822.

[7] Gumus B,Bal B,Gerstein G,et al.Twinning activities in high-Mn austenitic steel under high-velocity compresive loading[J].Materials Science and Engineering A,2015,648:104-112.

[8] Kim H,Ha Y,Kwon K H,et al.Interpretation of cryogenic-temperature charpy impact toughness by microstructural evolution of dynamically compressed specimens in austenitic 0.4C-(22-26)Mn steels[J].Acta Materialia,2015,87:332-343.

[9] 蔡李,苏钰,毛邈,等.层错能对TRIP/TWIP钢变形机制和力学性能的影响[J].热加工工艺,2015,44(6):20-23.CAI Li,SU Yu,MAO Miao,et al.Effect of stacking fault energy on deformation mechanism and mechanical properties of TRIP/TWIP steel[J].Hot Working Technology,2015,44(6):20-23.

[10] 秦小梅,陈礼清,邸洪双,等.变形温度对Fe-23Mn-2Al-0.2C TWIP钢变形机制的影响[J].金属学报,2011,47(9):1117-1122.QIN Xiao-mei,CHEN Li-qing,DI Hong-shuang,et al.Effect of deformation temperature on tensile deformation mechanism of Fe-23Mn-2A1-0.2C TWIP steel[J].Acta Metallurgica Sinica,2011,47(9):1117-1122.

[11] Olson G B,Cohen M.A general mechanism of martensitic nucleation:Part I.General concepts and the FCC→HCP transformation[J].Metallurgical Transactions A,1976,7(11):1897-1904.

[12] 王书晗,刘振宇,张维娜,等.TWIP钢不同温度变形的力学性能变化规律及机理研究[J].金属学报,2009,45(5):573-578.WANG Shu-han,LIU Zhen-yu ZHANG Wei-na,et al.Investigations on temperature dependence of mechanical properties and the deformation mechanism of a TWIP steel[J].Acta Metallurgica Sinica,2009,45(5):573-578.

[13] 代永娟,唐荻,米振莉,等.锰元素对TWIP钢层错能和变形机制的影响[J].材料工程,2009,37(7):39-42.DAI Yong-juan,TANG Di,MI Zhen-li,et al.The influence of manganese on the stacking fault energy and deformation mechanisms of the TWIP steel[J].Journal of Materials Engineering,2009,37(7):39-42.

[14] 宋开红.单一井径大膨胀率膨胀套管用TWIP钢的研究[D].成都:西南石油大学,2011.SONG Kai-hong.Development of the TWIP steels for expandable casting with large expansion rate[D].Chengdu:Southwest Petroleum University,2011.

[15] 许立雄.Fe-Mn-Al系轻质低温钢的组织调控及强韧化机理研究[D].北京:北京科技大学,2019.XU Li-xiong.Study on microstructuere control and strengthening-toughening mechanism of Fe-Mn-Al light-weight cryogenic steel[D].Beijing:University of Science and Technology Beijing,2019.

[16] Zhang L,Chen Z,Wang Y H,Ma G Q,et al.Fabricating interstitial-free steel with simultaneous high strength and good ductility with homogeneous layer and lamella structure[J].Scripta Materialia,2017,141:111-114.

[17] Wang T S,Zhang M,Wang Y H,et al.Martensitic transformation behaviour of deformed supercooled austenite[J].Scripta Materialia,2013,68(2):162-165.

[18] Venables J A.Deformation twinning in face-centred cubic Metals[J].Philosophical Magazine,1961,6 (63):379-396.

[19] Meyers M A,Vohringer O,Lubarda V A.The onset of twinning in metals:a constitutive description[J].Acta Materialia,2001,49(14):4025-4039.

[20] 阳锋,曹文全,董瀚.Mn含量对Fe-Mn合金组织及力学性能的影响[J].钢铁钒钛,2017,38(4):147-154.YANG Feng,CAO Wen-quan,DONG Han.Effects of Mn content on microstructure and mechanical properties of Fe-Mn alloy[J].Iron Steel Vanadium Titanium,2017,38(4):147-154.

[21] Kim J S,Jeon J B,Jung J E,et al.Effect of deformation induced on ductility enhancement in a Fe-12Mn steel at cryogenic temperatures[J].Metals and Materials International,2014,20(1):41-47.

[22] 刘春泉,彭其春,邓明明,等.第3代汽车用Mn-Al系中锰钢的研究现状[J].钢铁研究学报,2017,29(6):431-440.LIU Chun-quan,PENG Qi-chun,DENG Ming-ming,et al.Research situation of Mn-Al medium manganese steel for 3rd generation automobile sheet[J].Journal of Iron and Steel Research,2017,29(6):431-440.

基本信息:

DOI:10.13289/j.issn.1009-6264.2020-0337

中图分类号:TG142.1

引用信息:

[1]杨跃辉,梁国俐,苑少强.中碳25Mn钢低温冲击断裂过程中的变形机制[J],2021,42(02):98-102.DOI:10.13289/j.issn.1009-6264.2020-0337.

基金信息:

河北省高端钢铁冶金联合研究基金项目(E2019105101);; 唐山市科技计划项目(18130218a)

检 索 高级检索

引用

GB/T 7714-2015 格式引文
MLA格式引文
APA格式引文