nav emailalert searchbtn searchbox tablepage yinyongbenwen piczone journalimg journalInfo searchdiv qikanlogo popupnotification paper paperNew
2019, 12, v.40;No.234 25-31
时效态Mg-4Y-2Sm-xGd-0.5Zr合金组织与力学性能
基金项目(Foundation): 国家自然科学基金(51571084,51171059)
邮箱(Email):
DOI: 10.13289/j.issn.1009-6264.2019-0254
摘要:

采用光学显微镜、X射线衍射仪、扫描电镜对时效态Mg-4Y-2Sm-xGd-0.5Zr(x=0, 0.5, 1, 1.5 mass%)合金进行了微观组织及物相分析,并采用拉伸实验机在室温至250℃下对其进行了力学性能测试。结果表明:时效态Mg-4Y-2Sm-0.5Zr合金组织主要由α-Mg基体与Mg24Y5和Mg41Sm5析出相组成;加入Gd元素后,合金组织中有新相Mg5Gd形成;随着Gd添加量的增加,Mg5Gd析出相的数量增加,合金的晶粒得到细化;同一温度拉伸时,合金的抗拉强度在Gd添加量为1.0 mass%时达到峰值,其中室温拉伸时含1.0 mass%Gd的合金的抗拉强度为223.6 MPa;同一成分合金的抗拉强度随着拉伸温度的升高呈逐渐降低的趋势;室温拉伸时合金的伸长率在Gd添加量为0.5 mass%时最高,为15.13%;在150~250℃时高温拉伸时,伸长率在Gd添加量为1.0 mass%时达到峰值,并且比较稳定;加入Gd元素后的合金在150~250℃时具有良好的耐高温性能和热稳定性。

Abstract:

Microstructure and phases of aged Mg-4Y-2Sm-xGd-0.5Zr(x=0, 0.5, 1, 1.5 mass%) alloys were analyzed by means of optical microscope, X-ray diffractometer and scanning electron microscopy, and mechanical properties of the alloys were tested by tensile testing machine at room temperature to 250 ℃. The results show that the microstructure of the aged Mg-4Y-2Sm-0.5Zr alloy is mainly composed of α-Mg matrix and Mg24Y5 and Mg41Sm5 precipitated phases. After the addition of Gd, the new phase Mg5Gd is formed in the alloys. With the increase of Gd content, the amount of the precipitated phase of Mg5Gd increases and the grain size of the alloys is refined. At the same tensile temperature, the tensile strength of the alloys reaches the peak value when the Gd content is 1.0 mass%, and the tensile strength of the alloy with 1.0 mass% Gd is 223.6 MPa at room temperature. The tensile strength of the alloys with same composition decreases gradually with the increase of the tensile temperature. At room temperature, the elongation of the alloy is up to 15.13% when the Gd content is 0.5 mass%. At 150-250 ℃, the elongation of the alloy reaches the peak value when the Gd content is 1.0 mass%, and it is relatively stable. The alloys added with the Gd element have good high temperature resistance and thermal stability at 150-250 ℃

参考文献

[1] Wan Y C,Xiao H C,Jiang S N,et al.Microstructure and mechanical properties of semi-continuous cast Mg-Gd-Y-Zr alloy[J].Materials Science and Engineering A,2014,617:243-247.

[2] Yang Z,Wang Z H,Duan H B,et al.Microstructure evolution of Mg-6Gd-2Y alloy during solid solution and aging process[J].Materials Science and Engineering A,2015,631:160-165.

[3] 孟波波,李全安,陈晓亚,等.Mg-9Gd-4Y-1Zn-0.5Zr合金组织和性能[J].材料热处理学报,2017,38(8):35-40.MENG Bo-bo,LI Quan-an,CHEN Xiao-ya,et al.Microstructure and mechanical properties of as-cast Mg-9Gd-4Y-1Zn-0.5Zr alloy[J].Transactions of Materials and Heat Treatment,2017,38(8):35-40.

[4] Sudholz A D,Birbilis N,Berrles C J,et al.Corrosion behaviour of Mg-alloy AZ91E with atypical alloying additions[J].Journal of Alloys and Compounds,2009,471(1):109-115.

[5] Aghion E,Bronfm B,Von Buch F,et al.Newly developed magnesium alloys for powertrain applications[J].Journal of Metals,2003,55 (11):30-33.

[6] 杨晓红,彭丽梅,杨晨辉,等.固溶时效Mg-4Y-3Nd合金析出相与基体的微观结构[J].材料热处理学报,2015,36(4):39-43.YANG Xiao-hong,PENG Li-mei,YANG Chen-hui,et al.Microstructure of Mg-4Y-3Nd alloy after solution and aging treatment[J].Transactions of Materials and Heat Treatment,2015,36(4):39-43.

[7] Li D Q,Wang Q D,Ding W J.Effects of samarium on microstructure and mechanical properties of Mg-Y-Sm-Zr alloys during thermomechanical treatments[J].Journal of Materials Science,2009,44:3049-3056.

[8] 陈君,李全安,张清.钇对AZ6l镁合金组织和性能的影响[J].中国稀土学报,2015,33(4):449-454.CHEN Jun,LI Quan-an,ZHANG Qing.Effect of Y on microstructure and properties of AZ61 magnesium alloy[J].Journal of the Chinese Society of Rare Earths,2015,33(4):449-454.

[9] Jono Y,Yamasaki M,Kawamura Y,et al.Quantitative evaluation of creep strain distribution in an extruded Mg-Zn-Gd alloy of multimodal microstructure[J].Acta Materialia,2015,82:198-211.

[10] Abrukina N R.Microhardness of phases in the systems Mg-Sm-Y and Mg-Sm-Zn[J].Russian metallurgy:Metally,1987,(2):219-221.

[11] 刘宁远.Mg-Sm-Gd 系合金时效析出相及相变机理研究[D].上海:上海交通大学,2015:35-88.LIU Ning-yuan.Study on precipitates and phase transformation mechanism of Mg-Sm-Gd system alloys[D].Shanghai:Shanghai Jiao Tong University,2015:35-88.

[12] 付三玲.Mg-Gd(-Y-Sm-Zr)耐热镁合金组织和性能研究[D].西安:西安理工大学,2016:39-51.FU San-ling.Study on the microstructure and mechanical properties of Mg-Gd(-Y-Sm-Zr) heat resistant magnesium alloys[D].Xi’an:Xi’an University of Technology,2016:39-51.

[13] 董丽君,夏长清,周岩.稀土元素Gd对Mg-Y-Zr合金组织和高温力学性能的影响[J].铸造,2014,63(11):1149-1152.DONG Li-jun,XIA Chang-qing,ZHOU Yan.Effect of Gd on microstructure and high temperature mechanical properties of Mg-Y-Zr alloys[J].Foundry,2014,63(11):1149-1152.

[14] Gao L,Chen R S,Han E H.Fracture behavior of high strength Mg-Gd-Y-Zr magnesium alloy[J].Transactions of Nonferrous Metals Society of China,2010,20(7):1217-1221.

[15] Romano E,Passoni R,Romanowski C.Innovations in the process technology for manufacturing magnesium alloy sheet[J].Magnesium Technology,2015,1:485-490.

[16] 孟波波,Zn对Mg-9Gd-4Y-0.5Zr合金组织和性能影响[D].洛阳:河南科技大学,2018.MENG Bo-bo.Effect of Zn on microstructure and properties of Mg-9Gd-4Y-0.5Zr alloy[D].Luoyang:Henan University of Science and Technology,2018.

[17] Nussbaum G,Sainfort P,Regazzoni G,et al.Strengthening mechanisms in the rapidly solidified AZ91 magnesium alloy[J].Scripta Metallurgica,1989,23:1079-1084.

基本信息:

DOI:10.13289/j.issn.1009-6264.2019-0254

中图分类号:TG146.22

引用信息:

[1]李志涛,李全安,陈晓亚.时效态Mg-4Y-2Sm-xGd-0.5Zr合金组织与力学性能[J],2019,40(12):25-31.DOI:10.13289/j.issn.1009-6264.2019-0254.

基金信息:

国家自然科学基金(51571084,51171059)

检 索 高级检索

引用

GB/T 7714-2015 格式引文
MLA格式引文
APA格式引文