2,997 | 40 | 1599 |
下载次数 | 被引频次 | 阅读次数 |
高熵合金是21世纪初才问世的新型金属材料。尽管其诞生至今时间较短,但高熵合金因具有多种优异性能、特别是具有优异的力学性能、优异的催化和抗辐照等性能而受到广泛关注。近年来,相关研究已取得了显著进展,很有必要对其研究进展进行梳理。为此,本文简要综述了相关研究成果,并从高熵合金的基本概念、力学性能和功能性能3方面进行概括介绍,以期为高熵合金研究人员提供参考。
Abstract:High entropy alloy is a new type of metal material which came out only at the beginning of the 21 st century. Although it has been born for a short time, high entropy alloys have been attracted more and more attention because of their excellent properties, especially their excellent mechanical properties, excellent catalytic and irradiation-resistant properties and so on. In recent years, significant progress has been made in relevant research, so it is necessary to summarize its research progress. In this paper, the relevant research developments are briefly reviewed, and the basic concepts, mechanical properties and functional properties of the high entropy alloys are briefly summarized, which provides a reference for the researchers of high entropy alloys.
[1] Yeh J W,Chen S K,Lin S J,et al.Nanostructured high-entropy alloys with multiple principal elements:Novel alloy design concepts and outcomes[J].Advanced Engineering Materials,2004,6(5):299-303.
[2] Miracle D B,Senkov O N.A critical review of high entropy alloys and related concepts[J].Acta Materialia,2017,122:448-511.
[3] Yusenko K V,Riva S,Carvalho P A,et al.First hexagonal close packed high-entropy alloy with outstanding stability under extreme conditions and electrocatalytic activity for methanol oxidation[J].Scripta Materialia,2017,138:22-27.
[4] Glasscott M W,Pendergast A D,Goines S,et al.Electrosynthesis of high-entropy metallic glass nanoparticles for designer,multi-functional electrocatalysis[J].Nat Commun,2019,10(1):2650.
[5] Lacey S D,Dong Q,Huang Z,et al.Stable multimetallic nanoparticles for oxygen electrocatalysis[J].Nano Letters,2019,19(8):5149-5158.
[6] Zhang G,Ming K,Kang J,et al.High entropy alloy as a highly active and stable electrocatalyst for hydrogen evolution reaction[J].Electrochimica Acta,2018,279:19-23.
[7] Yao Y,Huang Z,Xie P,et al.Carbothermal shock synthesis of high-entropy-alloy nanoparticles[J].Science,2018,359(6383):1489-1494.
[8] Lu C,Niu L,Chen N,et al.Enhancing radiation tolerance by controlling defect mobility and migration pathways in multicomponent single-phase alloys[J].Nat Commun,2016,7:13564.
[9] Egami T,Guo W,Rack P D,et al.Irradiation resistance of multicomponent alloys[J].Metallurgical and Materials Transactions A,2013,45(1):180-183.
[10] Xia S Q,Wang Z,Yang T F,et al.Irradiation behavior in high entropy alloys[J].Journal of Iron and Steel Research,International,2015,22(10):879-884.
[11] Xia S Q,Yang X,Yang T F,et al.Irradiation resistance in AlxCoCrFeNi high entropy alloys[J].JOM,2015,67(10):2340-2344.
[12] Pogrebnjak A D,Yakushchenko I V,Bondar O V,et al.Irradiation resistance,microstructure and mechanical properties of nanostructured (TiZrHfVNbTa)N coatings[J].Journal of Alloys and Compounds,2016,679:155-163.
[13] Wang X X,Niu L L,Wang S.Interpreting radiation-induced segregation and enhanced radiation tolerance of single-phase concentrated solid-solution alloys from first principles[J].Materials Letters,2017,202:120-122.
[14] Greer A L.Confusion by design[J].Nature,1993,366(6453):303-304.
[15] Cantor B,Chang I T H,Knight P,et al.Microstructural development in equiatomic multicomponent alloys[J].Materials Science and Engineering A,2004,375-377:213-218.
[16] Zhang Y,Gao M,Yeh J,et al.High-Entropy Alloys:Fundamentals and Applications[M].Berlin:Springer,2016.
[17] Li Z,Pradeep K G,Deng Y,et al.Metastable high-entropy dual-phase alloys overcome the strength-ductility trade-off[J].Nature,2016,534(7606):227-230.
[18] He J Y,Wang H,Huang H L,et al.A precipitation-hardened high-entropy alloy with outstanding tensile properties[J].Acta Materialia,2016,102:187-196.
[19] Zhu J M,Fu H M,Zhang H F,et al.Microstructures and compressive properties of multicomponent AlCoCrFeNiMox alloys[J].Materials Science and Engineering A,2010,527(26):6975-6979.
[20] Ma S G,Zhang Y.Effect of Nb addition on the microstructure and properties of AlCoCrFeNi high-entropy alloy[J].Materials Science and Engineering A,2012,532:480-486.
[21] Chen W,Fu Z,Fang S,et al.Alloying behavior,microstructure and mechanical properties in a FeNiCrCo0.3Al0.7 high entropy alloy[J].Materials and Design,2013,51:854-860.
[22] Han Z D,Chen N,Lu S Y,et al.Structures and corrosion properties of the AlCrFeNiMo0.5Tix high entropy alloys[J].Materials and Corrosion,2018,69(5):641-647.
[23] Han Z D,Luan H W,Zhao S F,et al.Microstructures and mechanical properties of AlCrFeNiMo0.5Tix high entropy alloys[J].Chinese Physics Letters,2018,35(3):036102.
[24] Granberg F,Nordlund K,Ullah M W,et al.Mechanism of radiation damage reduction in equiatomic multicomponent single phase alloys[J].Physical Review Letters,2016,116(13):135504.
[25] Senkov O N,Wilks G B,Scott J M,et al.Mechanical properties of Nb25Mo25Ta25W25 and V20Nb20Mo20Ta20W20 refractory high entropy alloys[J].Intermetallics,2011,19(5):698-706.
[26] Owen L R,Pickering E J,Playford H Y,et al.An assessment of the lattice strain in the CrMnFeCoNi high-entropy alloy[J].Acta Materialia,2017,122:11-18.
[27] Tsai K Y,Tsai M H,Yeh J W.Sluggish diffusion in Co-Cr-Fe-Mn-Ni high-entropy alloys[J].Acta Materialia,2013,61(13):4887-4897.
[28] Otto F,Dlouh■,et al.Decomposition of the single-phase high-entropy alloy CrMnFeCoNi after prolonged anneals at intermediate temperatures[J].Acta Materialia,2016,112:40-52.
[29] He F,Wang Z,Wu Q,et al.Phase separation of metastable CoCrFeNi high entropy alloy at intermediate temperatures[J].Scripta Materialia,2017,126:15-19.
[30] Senkov O,Pilchak A,Semiatin S.Effect of cold deformation and annealing on the microstructure and tensile properties of a HfNbTaTiZr refractory high entropy alloy[J].Metallurgical and Materials Transactions A,2018,49(7):2876-2892.
[31] Feng B,Widom M.Elastic stability and lattice distortion of refractory high entropy alloys[J].Materials Chemistry and Physics,2018,210:309-314.
[32] Tong Y,Zhao S,Jin K,et al.A comparison study of local lattice distortion in Ni80Pd20 binary alloy and FeCoNiCrPd high-entropy alloy[J].Scripta Materialia,2018,156:14-18.
[33] Owen L R,Jones N G.Lattice distortions in high-entropy alloys[J].Journal of Materials Research,2018,33(19):2954-2969.
[34] Dabrowa J,Zajusz M,Kucza W,et al.Demystifying the sluggish diffusion effect in high entropy alloys[J].Journal of Alloys and Compounds,2018,783(30):193-207.
[35] Vaidya M,Pradeep K,Murty B,et al.Radioactive isotopes reveal a non sluggish kinetics of grain boundary diffusion in high entropy alloys[J].Scientific Reports,2017,7(1):12293.
[36] Divinski S V,Pokoev A V,Esakkiraja N,et al.A mystery of “sluggish diffusion” in high-entropy alloys:the truth or a myth?[J].Diffusion Foundations,2018,17:69-104.
[37] Tong C J,Chen Y L,Chen S K,et al.Microstructure characterization of AlxCoCrCuFeNi high-entropy alloy system with multiprincipal elements[J].Metallurgical and Materials Transactions A,2005,36(4):881-893.
[38] Diao H Y,Feng R,Dahmen K A,et al.Fundamental deformation behavior in high-entropy alloys:An overview[J].Current Opinion in Solid State and Materials Science,2017,21(5):252-266.
[39] Cheng H,Chen W,Liu X,et al.Effect of Ti and C additions on the microstructure and mechanical properties of the FeCoCrNiMn high-entropy alloy[J].Materials Science and Engineering A,2018,719:192-198.
[40] Gwalani B,Pohan R M,Waseem O A,et al.Strengthening of Al0.3CoCrFeMnNi-based ODS high entropy alloys with incremental changes in the concentration of Y2O3[J].Scripta Materialia,2019,162:477-481.
[41] Chen S,Tseng K K,Tong Y,et al.Grain growth and Hall-Petch relationship in a refractory HfNbTaZrTi high-entropy alloy[J].Journal of Alloys and Compounds,2019,795:19-26.
[42] Xiang S,Luan H,Wu J,et al.Microstructures and mechanical properties of CrMnFeCoNi high entropy alloys fabricated using laser metal deposition technique[J].Journal of Alloys and Compounds,2019,773:387-392.
[43] Xiang S,Li J,Luan H,et al.Effects of process parameters on microstructures and tensile properties of laser melting deposited CrMnFeCoNi high entropy alloys[J].Materials Science and Engineering A,2018.
[44] Sheikh S,Shafeie S,Hu Q,et al.Alloy design for intrinsically ductile refractory high-entropy alloys[J].Journal of Applied Physics,2016,120(16):164902.
[45] Qi L,Chrzan D C.Tuning ideal tensile strengths and intrinsic ductility of bcc refractory alloys[J].Physical Review Letters,2014,112(11):115503.
[46] Han Z D,Luan H W,Liu X,et al.Microstructures and mechanical properties of TixNbMoTaW refractory high-entropy alloys[J].Materials Science and Engineering A,2018,712:380-385.
[47] Han Z D,Chen N,Zhao S F,et al.Effect of Ti additions on mechanical properties of NbMoTaW and VNbMoTaW refractory high entropy alloys[J].Intermetallics,2017,84:153-157.
[48] Chen R,Qin G,Zheng H,et al.Composition design of high entropy alloys using the valence electron concentration to balance strength and ductility[J].Acta Materialia,2018,144:129-137.
[49] Gludovatz B,Hohenwarter A,Catoor D,et al.A fracture-resistant high-entropy alloy for cryogenic applications[J].Science,2014,345(6201):1153-1158.
[50] Okamoto N L,Fujimoto S,Kambara Y,et al.Size effect,critical resolved shear stress,stacking fault energy,and solid solution strengthening in the CrMnFeCoNi high-entropy alloy[J].Scientific Reports,2016,6:35863.
[51] Kivy M B,Zaeem M A.Generalized stacking fault energies,ductilities,and twinnabilities of CoCrFeNi-based face-centered cubic high entropy alloys[J].Scripta Materialia,2017,139:83-86.
[52] Zhang Z,Sheng H,Wang Z,et al.Dislocation mechanisms and 3D twin architectures generate exceptional strength-ductility-toughness combination in CrCoNi medium-entropy alloy[J].Nat Commun,2017,8:14390.
[53] Jo Y H,Jung S,Choi W M,et al.Cryogenic strength improvement by utilizing room-temperature deformation twinning in a partially recrystallized VCrMnFeCoNi high-entropy alloy[J].Nat Commun,2017,8:15719.
[54] Huang H,Wu Y,He J,et al.Phase-transformation ductilization of brittle high-entropy alloys via metastability engineering[J].Advanced Materials,2017,29(30):1701678.
[55] Lei Z,Liu X,Wu Y,et al.Enhanced strength and ductility in a high-entropy alloy via ordered oxygen complexes[J].Nature,2018,563(7732):546.
[56] Bligaard T,N?rskov J K,Dahl S,et al.The Br?nsted-Evans-Polanyi relation and the volcano curve in heterogeneous catalysis[J].Journal of Catalysis,2004,224(1):206-217.
[57] Batchelor T A A,Pedersen J K,Winther S H,et al.High-entropy alloys as a discovery platform for electrocatalysis[J].Joule,2019,3(3):834-845.
[58] Qiu H J,Fang G,Wen Y,et al.Nanoporous high-entropy alloys for highly stable and efficient catalysts[J].Journal of Materials Chemistry A,2019,7(11):6499-6506.
[59] Lacey S D,Dong Q,Huang Z,et al.Stable multimetallic nanoparticles for oxygen electrocatalysis[J].Nano Letters,2019,19(8):5149-5158.
[60] Egami T,Ojha M,Khorgolkhuu O,et al.Local electronic effects and irradiation resistance in high-entropy alloys[J].JOM,2015,67(10):2345-2349.
[61] Kumar N A P K,Li C,Leonard K J,et al.Microstructural stability and mechanical behavior of FeNiMnCr high entropy alloy under ion irradiation[J].Acta Materialia,2016,113:230-244.
[62] El-Atwani O,Li N,Li M,et al.Outstanding radiation resistance of tungsten-based high-entropy alloys[J].Science Advances,2019,5(3):eaav2002.
[63] Lucas M,Mauger L,Munoz J,et al.Magnetic and vibrational properties of high-entropy alloys[J].Journal of Applied Physics,2011,109(7):07E307.
[64] Zhang Y,Zuo T,Cheng Y,et al.High-entropy alloys with high saturation magnetization,electrical resistivity,and malleability[J].Scientific Reports,2013,3:1455.
[65] Li P,Wang A,Liu C.A ductile high entropy alloy with attractive magnetic properties[J].Journal of Alloys and Compounds,2017,694:55-60.
[66] Ko?elj P,Vrtnik S,Jelen A,et al.Discovery of a superconducting high-entropy alloy[J].Physical Review Letters,2014,113(10):107001.
[67] Guo J,Wang H,Rohr F von,et al.Robust zero resistance in a superconducting high-entropy alloy at pressures up to 190 GPa[J].Proc Natl Acad Sci,2017,114(50):13144-13147.
[68] Vrtnik S,Ko?elj P,Meden A,et al.Superconductivity in thermally annealed Ta-Nb-Hf-Zr-Ti high-entropy alloys[J].Journal of Alloys and Compounds,2017,695:3530-3540.
[69] Marik S,Varghese M,Sajilesh K,et al.Superconductivity in equimolar Nb-Re-Hf-Zr-Ti high entropy alloy[J].Journal of Alloys and Compounds,2018,769:1059-1063.
[70] Sogabe R,Goto Y,Mizuguchi Y.Superconductivity in REO0.5F0.5BiS2 with high-entropy-alloy-type blocking layers[J].Applied Physics Express,2018,11(5):053102.
[71] Fan Z,Wang H,Wu Y,et al.Thermoelectric performance of PbSnTeSe high-entropy alloys[J].Materials Research Letters,2017,5(3):187-194.
[72] Lin R C,Lee T K,Wu D H,et al.A study of thin film resistors prepared using Ni-Cr-Si-Al-Ta high entropy alloy[J].Advances in Materials Science and Engineering,2015,2015:84719.
[73] Sahlberg M,Karlsson D,Zlotea C,et al.Superior hydrogen storage in high entropy alloys[J].Scientific Reports,2016,6:36770.
[74] Yuan Y,Wu Y,Tong X,et al.Rare-earth high-entropy alloys with giant magnetocaloric effect[J].Acta Materialia,2017,125:481-489.
[75] Tsai M H,Yeh J W,Gan J Y.Diffusion barrier properties of AlMoNbSiTaTiVZr high-entropy alloy layer between copper and silicon[J].Thin Solid Films,2008,516(16):5527-5530.
[76] 张勇,盛文杰,杨潇,等.一种高性能光热转化多基元合金氮化物薄膜及其制备方法:中国,CN104630706A[P].2015-05-20.
[77] 翟秋亚,徐锦锋.用于焊接硬质合金与钢的高熵合金钎料及制备方法:中国,CN101554686[P].2009-10-14.
基本信息:
DOI:10.13289/j.issn.1009-6264.2019-0620
中图分类号:TG139
引用信息:
[1]栾亨伟,赵威,姚可夫.高熵合金的力学性能及功能性能研究进展[J],2020,41(01):1-11.DOI:10.13289/j.issn.1009-6264.2019-0620.
基金信息:
国家自然科学基金(51871129);; 国际合作项目支持