nav emailalert searchbtn searchbox tablepage yinyongbenwen piczone journalimg searchdiv qikanlogo popupnotification paper
2020 01 v.41;No.235 1-11
高熵合金的力学性能及功能性能研究进展
基金项目(Foundation): 国家自然科学基金(51871129);; 国际合作项目支持
邮箱(Email):
DOI: 10.13289/j.issn.1009-6264.2019-0620
中文作者单位:

清华大学材料学院;

摘要(Abstract):

高熵合金是21世纪初才问世的新型金属材料。尽管其诞生至今时间较短,但高熵合金因具有多种优异性能、特别是具有优异的力学性能、优异的催化和抗辐照等性能而受到广泛关注。近年来,相关研究已取得了显著进展,很有必要对其研究进展进行梳理。为此,本文简要综述了相关研究成果,并从高熵合金的基本概念、力学性能和功能性能3方面进行概括介绍,以期为高熵合金研究人员提供参考。

关键词(KeyWords): 高熵合金;;组织;;力学性能;;催化性能;;抗辐照性能
参考文献

[1] Yeh J W,Chen S K,Lin S J,et al.Nanostructured high-entropy alloys with multiple principal elements:Novel alloy design concepts and outcomes[J].Advanced Engineering Materials,2004,6(5):299-303.

[2] Miracle D B,Senkov O N.A critical review of high entropy alloys and related concepts[J].Acta Materialia,2017,122:448-511.

[3] Yusenko K V,Riva S,Carvalho P A,et al.First hexagonal close packed high-entropy alloy with outstanding stability under extreme conditions and electrocatalytic activity for methanol oxidation[J].Scripta Materialia,2017,138:22-27.

[4] Glasscott M W,Pendergast A D,Goines S,et al.Electrosynthesis of high-entropy metallic glass nanoparticles for designer,multi-functional electrocatalysis[J].Nat Commun,2019,10(1):2650.

[5] Lacey S D,Dong Q,Huang Z,et al.Stable multimetallic nanoparticles for oxygen electrocatalysis[J].Nano Letters,2019,19(8):5149-5158.

[6] Zhang G,Ming K,Kang J,et al.High entropy alloy as a highly active and stable electrocatalyst for hydrogen evolution reaction[J].Electrochimica Acta,2018,279:19-23.

[7] Yao Y,Huang Z,Xie P,et al.Carbothermal shock synthesis of high-entropy-alloy nanoparticles[J].Science,2018,359(6383):1489-1494.

[8] Lu C,Niu L,Chen N,et al.Enhancing radiation tolerance by controlling defect mobility and migration pathways in multicomponent single-phase alloys[J].Nat Commun,2016,7:13564.

[9] Egami T,Guo W,Rack P D,et al.Irradiation resistance of multicomponent alloys[J].Metallurgical and Materials Transactions A,2013,45(1):180-183.

[10] Xia S Q,Wang Z,Yang T F,et al.Irradiation behavior in high entropy alloys[J].Journal of Iron and Steel Research,International,2015,22(10):879-884.

[11] Xia S Q,Yang X,Yang T F,et al.Irradiation resistance in AlxCoCrFeNi high entropy alloys[J].JOM,2015,67(10):2340-2344.

[12] Pogrebnjak A D,Yakushchenko I V,Bondar O V,et al.Irradiation resistance,microstructure and mechanical properties of nanostructured (TiZrHfVNbTa)N coatings[J].Journal of Alloys and Compounds,2016,679:155-163.

[13] Wang X X,Niu L L,Wang S.Interpreting radiation-induced segregation and enhanced radiation tolerance of single-phase concentrated solid-solution alloys from first principles[J].Materials Letters,2017,202:120-122.

[14] Greer A L.Confusion by design[J].Nature,1993,366(6453):303-304.

[15] Cantor B,Chang I T H,Knight P,et al.Microstructural development in equiatomic multicomponent alloys[J].Materials Science and Engineering A,2004,375-377:213-218.

[16] Zhang Y,Gao M,Yeh J,et al.High-Entropy Alloys:Fundamentals and Applications[M].Berlin:Springer,2016.

[17] Li Z,Pradeep K G,Deng Y,et al.Metastable high-entropy dual-phase alloys overcome the strength-ductility trade-off[J].Nature,2016,534(7606):227-230.

[18] He J Y,Wang H,Huang H L,et al.A precipitation-hardened high-entropy alloy with outstanding tensile properties[J].Acta Materialia,2016,102:187-196.

[19] Zhu J M,Fu H M,Zhang H F,et al.Microstructures and compressive properties of multicomponent AlCoCrFeNiMox alloys[J].Materials Science and Engineering A,2010,527(26):6975-6979.

[20] Ma S G,Zhang Y.Effect of Nb addition on the microstructure and properties of AlCoCrFeNi high-entropy alloy[J].Materials Science and Engineering A,2012,532:480-486.

[21] Chen W,Fu Z,Fang S,et al.Alloying behavior,microstructure and mechanical properties in a FeNiCrCo0.3Al0.7 high entropy alloy[J].Materials and Design,2013,51:854-860.

[22] Han Z D,Chen N,Lu S Y,et al.Structures and corrosion properties of the AlCrFeNiMo0.5Tix high entropy alloys[J].Materials and Corrosion,2018,69(5):641-647.

[23] Han Z D,Luan H W,Zhao S F,et al.Microstructures and mechanical properties of AlCrFeNiMo0.5Tix high entropy alloys[J].Chinese Physics Letters,2018,35(3):036102.

[24] Granberg F,Nordlund K,Ullah M W,et al.Mechanism of radiation damage reduction in equiatomic multicomponent single phase alloys[J].Physical Review Letters,2016,116(13):135504.

[25] Senkov O N,Wilks G B,Scott J M,et al.Mechanical properties of Nb25Mo25Ta25W25 and V20Nb20Mo20Ta20W20 refractory high entropy alloys[J].Intermetallics,2011,19(5):698-706.

[26] Owen L R,Pickering E J,Playford H Y,et al.An assessment of the lattice strain in the CrMnFeCoNi high-entropy alloy[J].Acta Materialia,2017,122:11-18.

[27] Tsai K Y,Tsai M H,Yeh J W.Sluggish diffusion in Co-Cr-Fe-Mn-Ni high-entropy alloys[J].Acta Materialia,2013,61(13):4887-4897.

[28] Otto F,Dlouh■,et al.Decomposition of the single-phase high-entropy alloy CrMnFeCoNi after prolonged anneals at intermediate temperatures[J].Acta Materialia,2016,112:40-52.

[29] He F,Wang Z,Wu Q,et al.Phase separation of metastable CoCrFeNi high entropy alloy at intermediate temperatures[J].Scripta Materialia,2017,126:15-19.

[30] Senkov O,Pilchak A,Semiatin S.Effect of cold deformation and annealing on the microstructure and tensile properties of a HfNbTaTiZr refractory high entropy alloy[J].Metallurgical and Materials Transactions A,2018,49(7):2876-2892.

[31] Feng B,Widom M.Elastic stability and lattice distortion of refractory high entropy alloys[J].Materials Chemistry and Physics,2018,210:309-314.

[32] Tong Y,Zhao S,Jin K,et al.A comparison study of local lattice distortion in Ni80Pd20 binary alloy and FeCoNiCrPd high-entropy alloy[J].Scripta Materialia,2018,156:14-18.

[33] Owen L R,Jones N G.Lattice distortions in high-entropy alloys[J].Journal of Materials Research,2018,33(19):2954-2969.

[34] Dabrowa J,Zajusz M,Kucza W,et al.Demystifying the sluggish diffusion effect in high entropy alloys[J].Journal of Alloys and Compounds,2018,783(30):193-207.

[35] Vaidya M,Pradeep K,Murty B,et al.Radioactive isotopes reveal a non sluggish kinetics of grain boundary diffusion in high entropy alloys[J].Scientific Reports,2017,7(1):12293.

[36] Divinski S V,Pokoev A V,Esakkiraja N,et al.A mystery of “sluggish diffusion” in high-entropy alloys:the truth or a myth?[J].Diffusion Foundations,2018,17:69-104.

[37] Tong C J,Chen Y L,Chen S K,et al.Microstructure characterization of AlxCoCrCuFeNi high-entropy alloy system with multiprincipal elements[J].Metallurgical and Materials Transactions A,2005,36(4):881-893.

[38] Diao H Y,Feng R,Dahmen K A,et al.Fundamental deformation behavior in high-entropy alloys:An overview[J].Current Opinion in Solid State and Materials Science,2017,21(5):252-266.

[39] Cheng H,Chen W,Liu X,et al.Effect of Ti and C additions on the microstructure and mechanical properties of the FeCoCrNiMn high-entropy alloy[J].Materials Science and Engineering A,2018,719:192-198.

[40] Gwalani B,Pohan R M,Waseem O A,et al.Strengthening of Al0.3CoCrFeMnNi-based ODS high entropy alloys with incremental changes in the concentration of Y2O3[J].Scripta Materialia,2019,162:477-481.

[41] Chen S,Tseng K K,Tong Y,et al.Grain growth and Hall-Petch relationship in a refractory HfNbTaZrTi high-entropy alloy[J].Journal of Alloys and Compounds,2019,795:19-26.

[42] Xiang S,Luan H,Wu J,et al.Microstructures and mechanical properties of CrMnFeCoNi high entropy alloys fabricated using laser metal deposition technique[J].Journal of Alloys and Compounds,2019,773:387-392.

[43] Xiang S,Li J,Luan H,et al.Effects of process parameters on microstructures and tensile properties of laser melting deposited CrMnFeCoNi high entropy alloys[J].Materials Science and Engineering A,2018.

[44] Sheikh S,Shafeie S,Hu Q,et al.Alloy design for intrinsically ductile refractory high-entropy alloys[J].Journal of Applied Physics,2016,120(16):164902.

[45] Qi L,Chrzan D C.Tuning ideal tensile strengths and intrinsic ductility of bcc refractory alloys[J].Physical Review Letters,2014,112(11):115503.

[46] Han Z D,Luan H W,Liu X,et al.Microstructures and mechanical properties of TixNbMoTaW refractory high-entropy alloys[J].Materials Science and Engineering A,2018,712:380-385.

[47] Han Z D,Chen N,Zhao S F,et al.Effect of Ti additions on mechanical properties of NbMoTaW and VNbMoTaW refractory high entropy alloys[J].Intermetallics,2017,84:153-157.

[48] Chen R,Qin G,Zheng H,et al.Composition design of high entropy alloys using the valence electron concentration to balance strength and ductility[J].Acta Materialia,2018,144:129-137.

[49] Gludovatz B,Hohenwarter A,Catoor D,et al.A fracture-resistant high-entropy alloy for cryogenic applications[J].Science,2014,345(6201):1153-1158.

[50] Okamoto N L,Fujimoto S,Kambara Y,et al.Size effect,critical resolved shear stress,stacking fault energy,and solid solution strengthening in the CrMnFeCoNi high-entropy alloy[J].Scientific Reports,2016,6:35863.

[51] Kivy M B,Zaeem M A.Generalized stacking fault energies,ductilities,and twinnabilities of CoCrFeNi-based face-centered cubic high entropy alloys[J].Scripta Materialia,2017,139:83-86.

[52] Zhang Z,Sheng H,Wang Z,et al.Dislocation mechanisms and 3D twin architectures generate exceptional strength-ductility-toughness combination in CrCoNi medium-entropy alloy[J].Nat Commun,2017,8:14390.

[53] Jo Y H,Jung S,Choi W M,et al.Cryogenic strength improvement by utilizing room-temperature deformation twinning in a partially recrystallized VCrMnFeCoNi high-entropy alloy[J].Nat Commun,2017,8:15719.

[54] Huang H,Wu Y,He J,et al.Phase-transformation ductilization of brittle high-entropy alloys via metastability engineering[J].Advanced Materials,2017,29(30):1701678.

[55] Lei Z,Liu X,Wu Y,et al.Enhanced strength and ductility in a high-entropy alloy via ordered oxygen complexes[J].Nature,2018,563(7732):546.

[56] Bligaard T,N?rskov J K,Dahl S,et al.The Br?nsted-Evans-Polanyi relation and the volcano curve in heterogeneous catalysis[J].Journal of Catalysis,2004,224(1):206-217.

[57] Batchelor T A A,Pedersen J K,Winther S H,et al.High-entropy alloys as a discovery platform for electrocatalysis[J].Joule,2019,3(3):834-845.

[58] Qiu H J,Fang G,Wen Y,et al.Nanoporous high-entropy alloys for highly stable and efficient catalysts[J].Journal of Materials Chemistry A,2019,7(11):6499-6506.

[59] Lacey S D,Dong Q,Huang Z,et al.Stable multimetallic nanoparticles for oxygen electrocatalysis[J].Nano Letters,2019,19(8):5149-5158.

[60] Egami T,Ojha M,Khorgolkhuu O,et al.Local electronic effects and irradiation resistance in high-entropy alloys[J].JOM,2015,67(10):2345-2349.

[61] Kumar N A P K,Li C,Leonard K J,et al.Microstructural stability and mechanical behavior of FeNiMnCr high entropy alloy under ion irradiation[J].Acta Materialia,2016,113:230-244.

[62] El-Atwani O,Li N,Li M,et al.Outstanding radiation resistance of tungsten-based high-entropy alloys[J].Science Advances,2019,5(3):eaav2002.

[63] Lucas M,Mauger L,Munoz J,et al.Magnetic and vibrational properties of high-entropy alloys[J].Journal of Applied Physics,2011,109(7):07E307.

[64] Zhang Y,Zuo T,Cheng Y,et al.High-entropy alloys with high saturation magnetization,electrical resistivity,and malleability[J].Scientific Reports,2013,3:1455.

[65] Li P,Wang A,Liu C.A ductile high entropy alloy with attractive magnetic properties[J].Journal of Alloys and Compounds,2017,694:55-60.

[66] Ko?elj P,Vrtnik S,Jelen A,et al.Discovery of a superconducting high-entropy alloy[J].Physical Review Letters,2014,113(10):107001.

[67] Guo J,Wang H,Rohr F von,et al.Robust zero resistance in a superconducting high-entropy alloy at pressures up to 190 GPa[J].Proc Natl Acad Sci,2017,114(50):13144-13147.

[68] Vrtnik S,Ko?elj P,Meden A,et al.Superconductivity in thermally annealed Ta-Nb-Hf-Zr-Ti high-entropy alloys[J].Journal of Alloys and Compounds,2017,695:3530-3540.

[69] Marik S,Varghese M,Sajilesh K,et al.Superconductivity in equimolar Nb-Re-Hf-Zr-Ti high entropy alloy[J].Journal of Alloys and Compounds,2018,769:1059-1063.

[70] Sogabe R,Goto Y,Mizuguchi Y.Superconductivity in REO0.5F0.5BiS2 with high-entropy-alloy-type blocking layers[J].Applied Physics Express,2018,11(5):053102.

[71] Fan Z,Wang H,Wu Y,et al.Thermoelectric performance of PbSnTeSe high-entropy alloys[J].Materials Research Letters,2017,5(3):187-194.

[72] Lin R C,Lee T K,Wu D H,et al.A study of thin film resistors prepared using Ni-Cr-Si-Al-Ta high entropy alloy[J].Advances in Materials Science and Engineering,2015,2015:84719.

[73] Sahlberg M,Karlsson D,Zlotea C,et al.Superior hydrogen storage in high entropy alloys[J].Scientific Reports,2016,6:36770.

[74] Yuan Y,Wu Y,Tong X,et al.Rare-earth high-entropy alloys with giant magnetocaloric effect[J].Acta Materialia,2017,125:481-489.

[75] Tsai M H,Yeh J W,Gan J Y.Diffusion barrier properties of AlMoNbSiTaTiVZr high-entropy alloy layer between copper and silicon[J].Thin Solid Films,2008,516(16):5527-5530.

[76] 张勇,盛文杰,杨潇,等.一种高性能光热转化多基元合金氮化物薄膜及其制备方法:中国,CN104630706A[P].2015-05-20.

[77] 翟秋亚,徐锦锋.用于焊接硬质合金与钢的高熵合金钎料及制备方法:中国,CN101554686[P].2009-10-14.

基本信息:

DOI:10.13289/j.issn.1009-6264.2019-0620

中图分类号:TG139

引用信息:

[1]栾亨伟,赵威,姚可夫.高熵合金的力学性能及功能性能研究进展[J],2020,41(01):1-11.DOI:10.13289/j.issn.1009-6264.2019-0620.

基金信息:

国家自然科学基金(51871129);; 国际合作项目支持

检 索 高级检索

引用

GB/T 7714-2015 格式引文
MLA格式引文
APA格式引文