nav emailalert searchbtn searchbox tablepage yinyongbenwen piczone journalimg journalInfo searchdiv qikanlogo popupnotification paper paperNew
2025, 09, v.46 37-44
固溶温度对6111铝合金微观组织及力学性能的影响
基金项目(Foundation): 广西科技重大专项(桂科AA23023030)
邮箱(Email): szzhu16s@imr.ac.cn;
DOI: 10.13289/j.issn.1009-6264.2024-0498
摘要:

采用扫描电镜、透射电镜、电子背散射衍射技术和电子万能试验机等研究了固溶处理温度(460、490、520、550和580℃)对6111铝合金微观组织和力学性能的影响。结果表明:在所采用的固溶温度下,合金均未出现晶粒异常长大及过烧;460℃固溶时,合金中存在大量的Mg-Si和Al Fe MnSi未溶相,且晶粒再结晶不充分;随着固溶温度的升高,两种未溶相均大量回溶,尤以Mg-Si相最为显著,在固溶温度为580℃时,几乎完全消失;此外,升高固溶温度也使得合金中的再结晶晶粒占比大幅提高;得益于第二相充分回溶带来的高度过饱和溶质,以及晶粒高度再结晶对析出相粗化的抑制作用,580℃固溶处理样品中析出相较460℃固溶处理样品更为细小弥散;拉伸性能测试结果表明,合金在自然时效态和烘烤态的强度均随着固溶温度的升高而增加,伸长率在不同固溶温度下虽变化不明显,但整体而言也存在460℃固溶样品低于580℃固溶样品的规律,对比两种时效状态样品的拉伸性能随固溶温度的变化规律,580℃固溶对合金在烘烤态下性能的提升比自然时效态下更加明显。

Abstract:

Effect of solution treatment temperatures(460 ℃, 490 ℃, 520 ℃, 550 ℃, and 580 ℃) on microstructure and mechanical properties of 6111 aluminum alloy was studied using scanning electron microscopy, transmission electron microscopy, electron backscatter diffraction technique, and electron universal testing machine. The results show that at the adopted solution treatment temperature, the alloy does not exhibit abnormal grain growth or overburning. After solution treatment at 460 ℃, there are a large number of Mg-Si and Al Fe MnSi undissolved phases in the alloy, and the grain recrystallization is not sufficient. With the increase of solution treatment temperature, both undissolved phases dissolve in large quantities, especially the Mg-Si phase, which almost completely disappears at the solution treatment temperature of 580 ℃. In addition, increasing the solution treatment temperature also significantly increases the proportion of recrystallized grains in the alloy. Due to the highly supersaturated solute brought about by the full dissolution of the second phase, as well as the inhibitory effect of highly recrystallized grains on the coarsening of precipitated phases, the precipitation in the 580 ℃ solution treated sample is finer and more dispersed compared to the 460 ℃ solution treated sample. The tensile performance test results show that the strength of the alloy increases with the increase of solution treatment temperature in both natural aging and baking states. Although the elongation does not change significantly at different solution treatment temperatures, there is an overall trend that the tensile performance of the 460 ℃ solution treated sample is lower than that of the 580 ℃ solution treated sample. The variation of tensile properties of two aging state samples with solution treatment temperature indicates that the improvement of the alloy properties in the baked state by solution treatment at 580 ℃ is more significant than that in the natural aging state.

参考文献

[1]郑晖,赵曦雅.汽车轻量化及铝合金在现代汽车生产中的应用[J].锻压技术,2016,41(2):1-6.ZHENG Hui,ZHAO Xi-ya. Lightweight automobile and application of aluminum alloys in modern automobile production[J].Forging&Stamping Technology,2016,41(2):1-6.

[2] Miller W,Zhuang L,Bottema J,et al. Recent development in aluminium alloys for the automotive industry[J]. Materials Science and Engineering A,2000,280(1):37-49.

[3]贾志宏,丁立鹏,吴赛楠,等.汽车车身用6000系铝合金板材微观组织与热处理工艺的研究进展[J].材料工程,2014(12):104-113.JIA Zhi-hong,DING Li-peng,WU Sai-nan,et al. Research progress on microstructure and heat treatment of 6000 series aluminum alloys sheet for automotive body[J]. Journal of Materials Engineering,2014(12):104-113.

[4]安小雪. 6016铝合金汽车板的热处理工艺研究[D].沈阳:东北大学,2014.AN Xiao-xue. Study on heat treatment of 6016 aluminum alloy sheets for automotive body[D]. Shenyang:Northeastern University,2014.

[5] Prillhofer R,Rank G,Berneder J,et al. Property criteria for automotive Al-Mg-Si sheet alloys[J]. Materials,2014,7(7):5047-5068.

[6]史权新,邓坤坤,聂凯波,等.固溶处理对6061铝合金显微组织与力学性能的影响[J].材料热处理学报,2024,45(8):41-47.SHI Quan-xin,DENG Kun-kun,NIE Kai-bo,et al. Effect of solution treatment on microstructure and mechanical properties of 6061Al alloy[J]. Transactions of Materials and Heat Treatment,2024,45(8):41-47.

[7]彭靖,韩永光,罗凤翔,等.预变形和时效处理对Al-Mg-Si-Cu合金显微组织和性能的影响[J].材料热处理学报,2019,40(10):51-57.PENG Jing, HAN Yong-guang, LUO Feng-xiang, et al. Effect of pre-deformation and aging treatment on microstructure and properties of Al-Mg-Si-Cu alloy[J]. Transactions of Materials and Heat Treatment,2019,40(10):51-57.

[8] Chen Y T,Zhu S Z,Luo H J,et al. Effects of solution temperatures on microstructures and mechanical properties of B4C/7A04Al composites:A comparison study with 7A04Al alloys[J]. Materials Science and Engineering A,2024,890:145899.

[9]丁立鹏.汽车车身用Al-Mg-Si-Cu合金中析出相演变和热处理工艺研究[D].重庆:重庆大学,2017.DING Li-peng. Study on the precipitates evolution and heat treatment process of Al-Mg-Si-Cu alloys for automotive bodys[D].Chongqing:Chongqing University,2017.

[10] Gao G J, He C, Li Y, et al. Influence of different solution methods on microstructure, precipitation behavior and mechanical properties of Al-Mg-Si alloy[J]. Transactions of Nonferrous Metals Society of China,2018,28(5):839-847.

[11]刘胜胆,陈小连,张端正,等.固溶温度对6082铝合金显微组织与性能的影响[J].中国有色金属学报,2015,25(3):582-588.LIU Sheng-dan,CHEN Xiao-lian,ZHANG Duan-zheng,et al. Effect of solution heat treatment temperature on microstructure and properties of 6082 aluminum alloy[J]. The Chinese Journal of Nonferrous Metals,2015,25(3):582-588.

[12] Lei G P,Wang B,Lu J,et al. Effects of solid solution temperature on the microstructure and properties of 6013 aluminum alloy[J].Materials Chemistry and Physics,2022,280:125829.

[13]张新宇,隋欣,罗旭东,等.汽车用6014铝合金冷轧板的热处理工艺[J].金属热处理,2024,49(7):331-335.ZHANG Xin-yu,SUI Xin,LUO Xu-dong,et al. Heat treatment process of 6014 aluminum alloy cold rolled sheets for automobile[J]. Heat Treatment of Metals,2024,49(7):331-335.

[14]闵旭东,罗沁,郑明煜,等.固溶温度对汽车用6016铝合金组织与性能的影响[J].材料热处理学报,2024,45(9):109-115.MIN Xu-dong,LUO Qin,ZHENG Ming-yu,et al. Influence of solution treatment temperature on microstructure and properties of6016 aluminum alloy for automobiles[J]. Transactions of Materials and Heat Treatment,2024,45(9):109-115.

[15]郭丰佳,麻芳,迟蕊,等. Al-Mg-Si合金板材制备过程中微观组织的演变[J].热加工工艺,2023,52(15):26-30.GUO Feng-jia,MA Fang,CHI Rui,et al. Microstructure evolution of Al-Mg-Si alloy sheets during preparation[J]. Hot Working Technology,2023,52(15):26-30.

[16]刘东雨,韦艳妮,张静,等. Al-0. 32Mg-xSi合金铸态组织中的Al Fe Si相[J].热处理技术与装备,2014,35(2):10-14.LIU Dong-yu,WEI Yan-ni,ZHANG Jing,et al. Al Fe Si phase of Al-0. 32Mg-xSi aluminum alloys in cast state[J]. Heat Treatment Technology and Equipment,2014,35(2):10-14.

[17] Li Y X,Li P,Zhao G,et al. The constituents in Al-10Zn-2. 5Mg-2. 5Cu aluminum alloy[J]. Materials Science and Engineering A,2005,397(1/2):204-208.

[18]谭勇,王乙舒,周炜,等.热处理对Al-Mg-Si-Cu铝合金组织和性能的影响[J].热加工工艺,2022,51(22):130-133.TAN Yong,WANG Yi-shu,ZHOU Wei,et al. Effects of heat treatment on microstructure and properties of Al-Mg-Si-Cu aluminum alloy[J]. Hot Working Technology,2022,51(22):130-133.

[19] Ninive H P,Strandlie A,Gulbrandsen-Dahl S,et al. Detailed atomistic insight into the β″phase in Al-Mg-Si alloys[J]. Acta Materialia,2014,69126-134.

[20] Wenner S,Jones L,Marioara D C,et al. Atomic-resolution chemical mapping of ordered precipitates in Al alloys using energydispersive X-ray spectroscopy[J]. Micron,2017,96:103-111.

[21] Ding L P,Hu H,Jia Z L,et al. The disordered structure of Q′and C phases in Al-Mg-Si-Cu alloy[J]. Scripta Materialia,2016,118:55-59.

[22]朱士泽,王东,王全兆,等. Cu含量对Si C/Al-Mg-Si-Cu复合材料自然时效负面效应的影响[J].金属学报,2021,57(7):928-936.ZHU Shi-ze,WANG Dong,WANG Quan-zhao,et al. Influence of Cu content on the negative effect of natural aging in Si C/Al-MgSi-Cu composites[J]. Acta Metallurgica Sinica,2021,57(7):928-936.

[23] Myhr O R,Grong?,Andersen S. Modelling of the age hardening behaviour of Al-Mg-Si alloys[J]. Acta Materialia,2001,49(1):65-75.

[24] Starink M J,Cao L F,Rometsch P A. A model for the thermodynamics of and strengthening due to co-clusters in Al-Mg-Si-based alloys[J]. Acta Materialia,2012,60(10):4194-4207.

[25]刘刚,张鹏,杨冲,等.铝合金中的溶质原子团簇及其强韧化[J].金属学报,2021,57(11):1484-1498.LIU Gang,ZHANG Peng,YANG Chong,et al. Aluminum alloys:Solute atom clusters and their strengthening[J]. Acta Metallurgica Sinica,2021,57(11):1484-1498.

基本信息:

DOI:10.13289/j.issn.1009-6264.2024-0498

中图分类号:TG146.21;TG156.94

引用信息:

[1]刘耀武,朱士泽,王文广等.固溶温度对6111铝合金微观组织及力学性能的影响[J].材料热处理学报,2025,46(09):37-44.DOI:10.13289/j.issn.1009-6264.2024-0498.

基金信息:

广西科技重大专项(桂科AA23023030)

检 索 高级检索

引用

GB/T 7714-2015 格式引文
MLA格式引文
APA格式引文