重庆大学机械与运载工程学院;华纬科技股份有限公司;金属增材制造(3D打印)重庆市重点实验室;机械传动国家重点实验室;
采用光学显微镜(OM)、电子背散射衍射(EBSD)技术、透射电镜(TEM)及拉伸试验等研究了在线感应加热回火温度对55SiCrNb弹簧钢微观组织和力学性能的影响。结果表明:不同温度回火后,试验钢的组织主要为回火板条马氏体并在板条内含有较高密度的位错,板条马氏体中分布有长条状的Fe2.5C析出物及颗粒状的Fe_3C析出物,组织中未发现有弥散析出的Nb的碳化物,Nb的主要作用是细化晶粒,在快速感应热处理中微合金化元素Nb很难以第二相沉淀强化作用为基体提供强度增量;随着回火温度的升高,试验钢中的小角度晶界所占比例逐渐降低,组织中位错密度也逐渐降低,马氏体会不断分解,这些均会导致试验钢的强度逐渐降低,断面收缩率增大。
4 | 0 | 2 |
下载次数 | 被引频次 | 阅读次数 |
[1] 李文浩,孔祥华,刘虎,等.弹簧钢55SiCrA控制冷却工艺[J].材料热处理学报,2013,34(6):89-93.LI Wen-hao,KONG Xiang-hua,LIU Hu,et al.Controlled cooling process of spring steel 55SiCrA[J].Transactions of Materials and Heat Treatment,2013,34(6):89-93.
[2] 陈焕德,麻晗,孙国才,等.超高强度悬架弹簧用钢55SiCrNb的工业试制[J].金属热处理,2022,47(9):208-213.CHEN Huan-de,MA Han,SUN Guo-cai,et al.Industrial trial manufacture of 55SiCrNb steel for ultra high strength suspension spring[J].Heat Treatment of Metals,2022,47(9):208-213.
[3] 赵睿澍,孙俊杰,王浩,等.感应热处理对50CrV弹簧钢力学性能与马氏体亚结构的影响[J].材料热处理学报,2022,43(5):97-103.ZHAO Rui-shu,SUN Jun-jie,WANG Hao,et al.Effect of induction heat treatment on mechanical properties and martensite substructure of 50CrV spring steel[J].Transactions of Materials and Heat Treatment,2022,43(5):97-103.
[4] 蒙坚.弹簧钢55SiCrV的微合金化及热处理工艺研究[J].钢铁钒钛,2021,42(3):187-192.MENG Jian.Study on microalloying and heat treatment process of spring steel 55SiCrV[J].Iron Steel Vanadium Titanium,2021,42(3):187-192.
[5] 戴启雷,金雷,任英志,等.线速度对在线感应加热55SiCr弹簧钢组织和性能的影响[J].材料热处理学报,2022,43(8):110-116.DAI Qi-lei,JIN Lei,REN Ying-zhi,et al.Effect of wire speed on microstructure and properties of 55SiCr spring steel subjected to online induction heat treatment[J].Transactions of Materials and Heat Treatment,2022,43(8):110-116.
[6] 林传超.汽车用油淬火55SiCr弹簧钢丝的感应回火工艺与性能研究[D].南京:东南大学,2022.LIN Chuan-chao.Research on induction tempering process and properties of oil-quenched 55SiCr spring steel wire for automobiles[D].Nanjing:Southeast University,2022.
[7] Nacke B,Dietrich A.Potentials of single stage induction heating for press hardening of steel blanks[J].IOP Conference Series:Materials Science and Engineering,2018,424:12058.
[8] Papaefthymiou S,Banis A,Bouzouni M,et al.Effect of ultra-fast heat treatment on the subsequent formation of mixed martensitic/bainitic microstructure with carbides in a CrMo medium carbon steel[J].Metals,2019,9(3):312-326.
[9] Valdes-Tabernero M A,Vercruysse F,Sabirov I,et al.Effect of ultrafast heating on the properties of the microconstituents in a low-carbon steel[J].Metallurgical and Materials Transactions A,2018,49(8):3145-3150.
[10] Cerda F C,Schulz B,Celentano D,et al.Exploring the microstructure and tensile properties of cold-rolled low and medium carbon steels after ultrafast heating and quenching[J].Materials Science and Engineering A,2019,745:509-516.
[11] Spyros P,Marianthi B,Roumen H P.Study of carbide dissolution and austenite formation during ultra-fast heating in medium carbon chromium molybdenum steel[J].Metals,2018,8(8):646-663.
[12] 祖荣祥.高强度弹簧钢丝的感应加热处理[J].金属热处理,1995(1):11-14.ZU Rong-xiang.Induction heating treatment of high strength spring steel wire[J].Heat Treatment of Metals,1995(1):11-14.
[13] Alexandros B,Marianthi B,Evangelos G,et al.The formation of a mixed martensitic/bainitic microstructure and the retainment of austenite in a medium-carbon steel during ultra-fast heating[J].Materials Today Communication,2021,26:101994.
[14] Chen K,Zhou H J,Liu F B,et al.Effect of quenching and tempering temperature on microstructure and tensile properties of microalloyed ultra-high strength suspension spring steel[J].Materials Science and Engineering A,2019,766:138272.
[15] 姜婷,汪开忠,于同仁,等.热处理工艺对弹簧钢55SiCrV力学性能和组织的影响[J].金属热处理,2019,44(10):96-98.JIANG Ting,WANG Kai-zhong,YU Tong-ren,et al.Effect of heat treatment process on mechanical properties and microstructure of 55SiCrV spring steel[J].Heat Treatment of Metals,2019,44(10):96-98.
[16] Dai Q L,Li K,Meng K R,et al.Effect of vanadium on the microstructure and mechanical properties of 2100 MPa ultra-high strength high plasticity spring steel processed by a novel online rapid-induction heat treatment[J].Metals and Materials International,2023,29(4):922-933.
[17] Dai Q L,Jin L,Chen W,et al.High-performance reality of 55SiCrV spring steel processed by the rapid-induction heat treatment[J].Materials Science and Technology,2023,39(9/10):1267-1277.
[18] 张可,孙新军,雍岐龙,等.回火时间对高Ti微合金化淬火马氏体钢组织及力学性能的影响[J].金属学报,2015,51(5):553-560.ZHANG Ke,SUN Xin-jun,YONG Qi-long,et al.Effect of tempering time on microstructure and mechanical properties of high Ti microalloyed quenched martensitic steel[J].Acta Metallurgica Sinica,2015,51(5):553-560.
[19] Winning M,Rollett A D.Transition between low and high angle grain boundaries[J].Acta Materialia,2005,53(10):2901-2907.
[20] Tan L,Allen T R.An electron backscattered diffraction study of grain boundary-engineered INCOLOY alloy 800H[J].Metallurgical and Materials Transactions A,2005,36:1921-1925.
[21] Kim B,Boucard E,Sourmail T,et al.The influence of silicon in tempered martensite:Understanding the microstructure-properties relationship in 0.5-0.6wt.% C steels[J].Acta Materialia,2014,68:169-178.
[22] Galindo-Nava E I,Rivera-Díaz-Del-Castillo P E J.Understanding the factors controlling the hardness in martensitic steels[J].Scripta Materialia,2016,110:96-100.
[23] Galindo-Nava E I,Rivera-Díaz-Del-Castillo P E J.A model for the microstructure behavior and strength evolution in lath martensite[J].Acta Materialia,2015,98:81-93.
[24] Morito S,Yoshida H,Maki T,et al.Effect of block size on the strength of lath martensite in low carbon steels[J].Materials Science and Engineering A,2006,438(1):237-240.
[25] Morris J W,Guo Z,Krenn C R,et al.The limits of strength and toughness in steel[J].ISIJ International,2001,41:599-611.
基本信息:
DOI:10.13289/j.issn.1009-6264.2024-0315
中图分类号:TG142.1;TG156.5
引用信息:
[1]戴启雷,张元杰,孟开仁等.在线感应加热回火温度对55SiCrNb弹簧钢组织和性能的影响[J].材料热处理学报,2025,46(05):130-136.DOI:10.13289/j.issn.1009-6264.2024-0315.
基金信息:
中央高校基本科研业务费(2021CDJQY-024); 国家自然科学基金面上项目(51975073)