108 | 0 | 52 |
下载次数 | 被引频次 | 阅读次数 |
采用重力铸渗法制备了ZTA/高锰钢(Mn17Cr2)基复合材料,利用分离式霍普金森压杆(SHPB)对其在高应变速率(975、1060、1581、2664和3193 s-1)下进行动态压缩实验,分析了复合材料在不同应变速率下的动态力学行为。结果表明:当应变速率从975 s-1增加到3139 s-1时,复合材料的加工硬化现象越明显,屈服强度与抗压强度都增加了约2倍,加工硬化率增加了2.7倍以上,显微硬度也从318.3 HV0.1增加到了505.4 HV0.1;随着应变速率的增大,基体和ZTA颗粒的局部结合处在很短时间内积聚了大量热量导致温度升高,这会使基体出现因热软化而导致的熔化现象。
Abstract:ZTA/high manganese steel(Mn17Cr2) based composites were prepared by gravity casting method, and dynamic compression experiments were carried out for the composites using a split Hopkinson pressure bar(SHPB) at high strain rates(975 s-1, 1060 s-1, 1581 s-1, 2664 s-1, and 3193 s-1). The dynamic mechanical behavior of the composites at different strain rates was analyzed. The results show that as the strain rate increases from 975 s-1 to 3139 s-1, the work hardening phenomenon of the composites becomes more pronounced, the yield strength and compressive strength increase by about 2 times, the work hardening rate increases by more than 2.7 times, and the microhardness increases from 318.3 HV0.1 to 505.4 HV0.1. As the strain rate increases, the local bonding between the matrix and ZTA particles accumulates a large amount of heat in a short period of time, leading to a temperature increase and the subsequent matrix melting due to thermal softening.
[1] Pagounis E,Lindroos V K.Development and performance of new hard and wear resistant engineering materials[J].Journal of Materials Engineering and Performance,1997,6(6):749-756.
[2] Chen W,Biswas B,Roberts A,et al.Abrasion wear resistance of wall lining materials in bins and chutes during iron ore mining[J].International Journal of Mineral Processing,2017,167:42-48.
[3] Ba L,Gao G,Cen W,et al.The impact-abrasive wear behavior of high wear resistance filling pipeline with explosion treatment[J].Vacuum,2021,192:110427.
[4] Valtonen K,Keltam?ki K,Kuokkala V,et al.High-stress abrasion of wear resistant steels in the cutting edges of loader buckets[J].Tribology International,2018,119:707-720.
[5] 王晋杰,张文达,陈民涛,等.轻质耐磨高锰钢的研究进展[J].材料热处理学报,2024,45(2):13-22.WANG Jin-jie,ZHANG Wen-da,CHEN Min-tao,et al.Research progress of lightweight wear-resistant high manganese steel[J].Transactions of Materials and Heat Treatment,2024,45(2):13-22.
[6] Asghari A,Zarei-Hanzaki A,Eskandari M,et al.Temperature dependence of plastic deformation mechanisms in a modified transformation-twinning induced plasticity steel[J].Materials Science and Engineering A,2013,579:150-156.
[7] 杨跃辉,梁国俐,苑少强.中碳25Mn钢低温冲击断裂过程中的变形机制[J].材料热处理学报,2021,42(2):98-102.YANG Yue-hui,LIANG Guo-li,YUAN Shao-qiang.Deformation mechanism of medium carbon 25Mn steel during low temperature impact fracture[J].Transactions of Materials and Heat Treatment,2021,42(2):98-102.
[8] 周谟金,祝明明,向晓龙,等.ZTAP/HCCI复合材料热处理条件下的界面残余热应力[J].材料热处理学报,2021,42(6):188-194.ZHOU Mo-jin,ZHU Ming-ming,XIANG Xiao-long,et al.Interfacial residual thermal stress of ZTAP/HCCI composites under heat treatment[J].Transactions of Materials and Heat Treatment,2021,42(6):188-194.
[9] Gao J,Li T,Yan Z,et al.Research on the interface and properties of spherical ZTA particles reinforced Fe-Cr-B matrix composite[J].Journal of Materials Research and Technology,2022,19:1322-1331.
[10] Novak S,Kalin M,Lukas P,et al.The effect of residual stresses in functionally graded alumina-ZTA composites on their wear and friction behavior[J].Journal of the European Ceramic Society,2007,27(1):151-156.
[11] Qiu B,Xing S,Dong Q,et al.Comparison of properties and impact abrasive wear performance of ZrO2-Al2O3/Fe composite prepared by pressure casting and infiltration casting process[J].Tribology International,2020,142:105979.
[12] Jahani B,Jazi S,Azarmi F,et al.Effect of volume fraction of reinforcement phase on mechanical behavior of ultra-high-temperature composite consisting of iron matrix and TiB particulates[J].Journal of Composite Materials,2018,52(5):609-620.
[13] Zhao Y B,Li Z,Li Y,et al.Effect of ceramic particle shape on wear resistance mechanism of zirconia toughened alumina ceramic reinforced high chromium cast iron architectural composite[J].Ceramics International,2024,50(7):11370-11375.
[14] Sui Y D,Zhou M J,Jiang Y H,et al.Characterization of interfacial layer of ZTA ceramic particles reinforced iron matrix composites[J].Journal of Alloys and Compounds,2018,741:1169-1174.
[15] Zhou M J,Jiang Y H,Chong X Y,et al.Interface transition layer interaction mechanism for ZTAP/HCCI composites[J].Science & Engineering of Composite Materials,2017,25:1-10.
[16] Zhao S M,Zhang X M,Zheng K H,et al.Study on preparation and wear properties of ZTA/high chromium cast iron matrix composites[J].Foundry Technology,2011,32(12):1673-1676.
[17] Dini G,Najafizadeh A,Ueji R,et al.Tensile deformation behavior of high manganese austenitic steel:The role of grain size[J].Materials & Design,2010,31:3395-3402.
[18] Dobrzański L,Borek W.Thermo-mechanical treatment of Fe-Mn-(Al,Si) TRIP/TWIP steels[J].Archives of Civil and Mechanical Engineering,2012,12:299-304.
[19] Eskandari M,Zarei-Hanzaki A,Szpunar J,et al.Microstructure evolution and mechanical behavior of a new microalloyed high Mn austenitic steel during compressive deformation[J].Materials Science and Engineering A,2014,615:424-435.
[20] Scott C,Allain S,Faral M,et al.The development of a new Fe-Mn-C austenitic steel for automotive applications[J].Metallurgical Research & Technology,2006,6:293-302.
[21] Ghomi H,Odeshi A.The effects of microstructure,strain rates and geometry on dynamic impact response of a carbon-manganese steel[J].Materials Science and Engineering A,2012,532:308-315.
[22] Canadinc D,Uzer B,Elmadgli M,et al.Nano twin formation in high-manganese austenitic steels under explosive shock loading[J].Metallurgical and Materials Transactions A,2018,49:1026-1030.
[23] Sahu P,Curtze S,Das A,et al.Stability of austenite and quasi-adiabatic heating during high-strain-rate deformation of twinning-induced plasticity steels[J].Scripta Materialia,2010,62:5-8.
[24] Jung I,Decterov S,Pelton A,et al.Critical thermodynamic evaluation and optimization of the MgO-Al2O3,CaO-MgO-Al2O3,and MgO-Al2O3-SiO2 systems[J].Journal of Phase Equilibria and Diffusion,2004,25:329-345.
[25] Perng C,Hwang J,Doong J,et al.High strain rate tensile properties of an (Al2O3 particles)-(Al alloy 6061-T6) metal matrix composite[J].Materials Science and Engineering A,1993,171(1/2):213-221.
[26] Chen H,Zhao D,Wang Q,et al.Effects of impact energy on the wear resistance and work hardening mechanism of medium manganese austenitic steel[J].Friction,2017,5(4):447-454.
[27] Yu F,Zhang Y,Kong C,et al.High strength and toughness of Ti-6Al-4V sheets via cryorolling and short-period annealing[J].Materials Science and Engineering A,2022,854:143766.
基本信息:
DOI:10.13289/j.issn.1009-6264.2024-0270
中图分类号:TB333
引用信息:
[1]杨剑,周谟金,王志杰等.高应变速率下ZTA/Mn17Cr2复合材料的动态压缩性能[J].材料热处理学报,2025,46(04):32-40.DOI:10.13289/j.issn.1009-6264.2024-0270.
基金信息:
云南省基础研究计划(202401AT070320)