82 | 0 | 53 |
下载次数 | 被引频次 | 阅读次数 |
采用熔铸法制备了CeO2纳米颗粒增强的Sn58Bi复合钎料,研究了CeO2纳米颗粒对Sn58Bi钎料及其钎焊接头组织与性能的影响。结果表明:添加CeO2纳米颗粒,细化了Sn58Bi钎料的共晶组织,Bi相由块状逐渐转变为细条状;添加0.125~0.5 mass%的CeO2纳米颗粒提高了复合钎料的润湿性;在添加量0.5 mass%时复合钎料的抗拉强度最大,为68.9 MPa,较基体钎料提升37%;复合钎料与Cu基板可实现良好焊接。添加CeO2纳米颗粒降低了钎焊接头界面金属间化合物(IMC)层的厚度,形态由棒状转变为较为平整的扇贝状,钎焊接头剪切强度提高;当添加量为0.5 mass%时,钎焊接头的剪切强度最大,为45.4 MPa,较于基体钎料接头提升了32.4%,断裂位置由基体钎料接头的IMC/Cu基板界面向IMC/钎缝界面迁移;断裂机制由呈片状解理刻面+少量冰糖状IMC解理组成的脆性断裂转变为钎缝准解理为主的韧-脆混合断裂。
Abstract:CeO2 nanoparticles reinforced Sn58Bi composite solder was prepared by melting casting method, and the effect of CeO2 nanoparticles on microstructure and properties of the Sn58Bi solder and its solder joints was studied. The results show that the addition of CeO2 nanoparticles refines the eutectic structure of the Sn58Bi solder, and the Bi phase gradually transforms from block-like to fine needle-like. The addition of 0.125-0.5 mass% CeO2 nanoparticles improves the wettability of the composite solders. When the addition amount reaches 0.5 mass%, the tensile strength of the composite solder is the highest of 68.9 MPa, which is 37% higher than that of the matrix solder. Composite solder can achieve good welding with Cu substrates. The addition of CeO2 nanoparticles reduces the thickness of the intermetallic compound(IMC) layer at the interface of the solder joint, and the morphology changes from rod-shaped to relatively flat fan-shaped, resulting in an increase in the shear strength of the solder joint. When the addition amount is 0.5 mass%, the maximum shear strength of the solder joint is 45.4 MPa, which is 32.4% higher than that of the matrix solder joint. The fracture position shifts from the IMC/Cu substrate interface of the matrix solder joint to the IMC/solder joint interface. The fracture mechanism changes from brittle fracture composed of lamellar cleavage facets and a small amount of dendritic IMC cleavage to ductile-brittle mixed fracture dominated by quasi-cleavage of the solder.
[1] Zhong S J,Zhang L,Li M L,et al.Development of lead-free interconnection materials in electronic industry during the past decades:Structure and properties[J].Materials & Design,2022,215:110439.
[2] Liu Y,Fu H,Sun F,et al.Microstructure and mechanical properties of as-reflowed Sn58Bi composite solder pastes[J].Journal of Materials Processing Technology,2016,238:290-296.
[3] Wang F,Chen H,Huang Y,et al.Recent progress on the development of Sn-Bi based low-temperature Pb-free solders[J].Journal of Materials Science:Materials in Electronics,2019,30(4):3222-3243.
[4] Chen C M,Chen L T,Lin Y S.Electromigration-induced Bi segregation in eutectic SnBi solder joint[J].Journal of Electronic Materials,2007,36(2):168-172.
[5] 张超,张柯柯,王钰茗,等.Ni-rGO增强Sn2.5Ag0.7Cu0.1RE/Cu钎焊接头的电迁移组织与性能[J].材料热处理学报,2023,44(12):185-195.ZHANG Chao,ZHANG Ke-ke,WANG Yu-ming,et al.Electromigration microstructure and properties of Ni-rGO reinforced Sn2.5Ag0.7Cu0.1RE/Cu solder joints[J].Transactions of Materials and Heat Treatment,2023,44(12):185-195.
[6] Shalaby R M.Effect of silver and indium addition on mechanical properties and indentation creep behavior of rapidly solidified Bi-Sn based lead-free solder alloys[J].Materials Science and Engineering A,2013,560:86-95.
[7] Liu S,Song T,Xiong W,et al.Effects of Ag on the microstructure and shear strength of rapidly solidified Sn-58Bi solder[J].Journal of Materials Science:Materials in Electronics,2019,30(7):6701-6707.
[8] 徐凤仙,朱文嘉,严继康,等.SnBi36Ag0.5Cux焊料合金组织、性能研究[J].昆明理工大学学报(自然科学版),2022,47(5):32-39.XU Feng-xian,ZHU Wen-jia,YAN Ji-kang,et al.Microstructure and properties of SnBi36Ag0.5Cux solder alloy[J].Journal of Kunming University of Science and Technology (Natural Science),2022,47(5):32-39.
[9] 何凯,陈益平,胡德安,等.Al元素对亚共晶SnBi钎料接头组织及力学性能影响[J].材料热处理学报,2020,41(3):163-169.HE Kai,CHEN Yi-ping,HU De-an,et al.Effect of Al element on microstructure and mechanical properties of hypoeutectic SnBi solder joint[J].Transactions of Materials and Heat Treatment,2020,41(3):163-169.
[10] Zhou S,Mokhtari O,Rafique M G,et al.Improvement in the mechanical properties of eutectic Sn58Bi alloy by 0.5 and 1 wt% Zn addition before and after thermal aging[J].Journal of Alloys and Compounds,2018,765:1243-1252.
[11] 李正兵,李海涛,郭义乐,等.Co颗粒含量对SnBi/Cu接头微观组织与性能的影响[J].材料工程,2022,50(7):149-155.LI Zheng-bing,LI Hai-tao,GUO Yi-le,et al.Effect of Co particle cintent on microstructure and properties of Sn58Bi/Cu joints[J].Journal of Materials Engineering,2022,50(7):149-155.
[12] Wang F,Zhou L,Wang X,et al.Microstructural evolution and joint strength of Sn-58Bi/Cu joints through minor Zn alloying substrate during isothermal aging[J].Journal of Alloys and Compounds,2016,688:639-648.
[13] Song Q,Yang W,Li Y,et al.Interfacial reaction and mechanical properties of Sn58Bi-XCr solder joints under isothermal aging conditions[J].Vacuum,2021,194:110559.
[14] 吴婉,张柯柯,吴咏锦,等.镀铜氧化锆增强低银Sn1.0Ag0.5Cu复合钎料的性能及其钎焊接头性能[J].材料热处理学报,2022,43(12):169-177.WU Wan,ZHANG Ke-ke,WU Yong-jin,et al.Properties of copper-plated zirconia reinforced low silver Sn1.0Ag0.5Cu composite solder and its brazing joint properties[J].Transactions of Materials and Heat Treatment,2022,43(12):169-177.
[15] Kang T Y,Xiu Y Y,Xu B,et al.Effect of Ni addition on the formation and growth of intermetallic compound at eutectic SnBi/Cu interface[J].Advanced Materials Research,2010,160:709-714.
[16] Xu Q,Ding X,Chen C,et al.Role of erbium in microstructure and mechanical properties of Sn58Bi42 solder alloy[J].Materials Letters,2021,305:130745.
[17] Yim B S,Youn H J,Lee J I,et al.Influence of carbon nanotube concentration on the interconnection properties of solderable isotropic and anisotropic conductive adhesive[J].Journal of Welding and Joining,2020,38(2):152-157.
[18] Zhou S,Yang C H,Lin S K,et al.Effects of Ti addition on the microstructure,mechanical properties and electrical resistivity of eutectic Sn58Bi alloy[J].Materials Science and Engineering A,2019,744:560-569.
[19] Ren G,Wilding I J,Collins M N.Alloying influences on low melt temperature SnZn and SnBi solder alloys for electronic interconnections[J].Journal of Alloys and Compounds,2016,665:251-260.
[20] He P,Lv X C,Lin T S,et al.Improvement of mechanical properties of Sn-58Bi alloy with multi-walled carbon nanotubes[J].Transactions of Nonferrous Metals Society of China,2012,22:692-696.
[21] Ma Y,Li X,Zhou W,et al.Reinforcement of graphene nanosheets on the microstructure and properties of Sn58Bi lead-free solder[J].Materials & Design,2017,113:264-272.
[22] Hu T,Li Y,Chan Y C,et al.Effect of nano Al2O3 particles doping on electromigration and mechanical properties of Sn-58Bi solder joints[J].Microelectronics Reliability,2015,55(8):1226-1233.
[23] Yang L,Dai J,Zhang Y,et al.Influence of BaTiO3 nanoparticle addition on microstructure and mechanical properties of Sn-58Bi solder[J].Journal of Electronic Materials,2015,44(7):2473-2478.
[24] Wang X,Zhang L,Chen C,et al.Effect of AlN on the microstructure evolution of Cu/Sn58Bi/Cu solder joints for 3D packaging at different bonding times[J].Journal of Materials Research and Technology,2023,25:4488-4496.
[25] Amares S,Durairaj R,Kuan S H.Experimental study on the melting temperature,microstructural and improved mechanical properties of Sn58Bi/Cu solder alloy reinforced with 1%,2% and 3% zirconia (ZrO2) nanoparticles[J].Archives of Metallurgy and Materials,2020:407-418.
[26] Zhang L,Yang W,Feng J,et al.Effect of the addition of CeO2 nanoparticles on the microstructure and shear properties of Sn-57Bi-1Ag solder alloy[J].Journal of Materials Research and Technology,2023,26:1062-1078.
[27] Puente-martínez D E,Díaz-guillén J A,Montemayor S M,et al.High ionic conductivity in CeO2 SOFC solid electrolytes;effect of Dy doping on their electrical properties[J].International Journal of Hydrogen Energy,2020,45(27):14062-14070.
[28] Li Z H,Tang Y,Guo Q W,et al.Effects of CeO2 nanoparticles addition on shear properties of low-silver Sne0.3Age0.7Cu-xCeO2 solder alloys[J].Journal of Alloys and Compounds,2019,789:150-162.
[29] 甘贵生,杜长华,许惠斌,等.纳米Ni颗粒增强无铅Sn-Cu-Ag复合钎料搅拌辅助低温钎焊技术[J].中国有色金属学报,2013,23(10):2875-2881.GAN Gui-sheng,DU Chang-hua,XU Hui-bin,et al.Low-temperature soldering technology with stirring for nano-Ni particle-reinforced lead-free Sn-Cu-Ag composite solders[J].The Chinese Journal of Nonferrous Metals,2013,23(10):2875-2881.
[30] Sharma A,Srivastava A K,Ahn B.Microstructure,mechanical properties,and drop reliability of CeO2 reinforced Sn-9Zn composite for low temperature soldering[J].Materials Research Express,2019,6(5):056520.
[31] 陈进,屈敏,崔岩.镀镍多壁碳纳米管对Sn-3.0Ag-0.5Cu无铅钎料焊点界面行为的影响[J].金属热处理,2021,46(12):113-118.CHEN Jin,QU Min,CUI Yan.Effect of Ni-CNTs on interface behavior of Sn-3.0Ag-0.5Cu lead-free solder joints[J].Heat Treatment of Metals,2021,46(12):113-118.
[32] Liang S,Jiang H,Zhong Z,et al.Investigating the preferential growth of Bi grains in Sn-Bi based solder under thermal aging[J].Journal of Materials Research and Technology,2024,28:4152-4161.
[33] Hu X,Huang Q,Li Y,et al.A study on the interfacial reaction of Sn58Bi/Cu soldered joints under various cooling and aging conditions[J].Journal of Materials Science Materials in Electronics,2015,26:5140-5151.
[34] Lin K,Ling H,Hu A,et al.Growth behavior and formation mechanism of porous Cu3Sn in Cu/Sn solder system[J].Materials Characterization,2021,178:111271.
[35] Hu X,Li Y,Min Z.Interfacial reaction and growth behavior of IMCs layer between Sn-58Bi solders and a Cu substrate[J].Journal of Materials Science:Materials in Electronics,2013,24(6):2027-2034.
基本信息:
DOI:10.13289/j.issn.1009-6264.2024-0224
中图分类号:TG425
引用信息:
[1]陈伟明,张柯柯,范玉春等.CeO_2纳米颗粒增强Sn58Bi钎料及其钎焊接头的组织与性能[J].材料热处理学报,2025,46(03):215-225.DOI:10.13289/j.issn.1009-6264.2024-0224.
基金信息:
国家自然科学基金(U1604132); 中原基础研究领军人才(ZYYCYU202012130); 河南省国际合作重点项目(2024100014); 河南省科技攻关项目(242102230048)