| 47 | 0 | 53 |
| 下载次数 | 被引频次 | 阅读次数 |
钛/钢复合板具有良好的耐蚀性和较低的成本,但其较差的综合力学性能限制了其应用范围的拓展,如何提升其综合性能成为研究热点。研究了不同退火温度对预制波纹轧制的钛/钢复合板界面不同位置的微观组织和力学性能的影响。结果表明:随着退火温度的升高,界面处Fe和Ti元素跨界面的扩散距离不断增加,C元素向界面集中,这一现象促进了TiC颗粒的形核与长大,同时,(α-Ti+β-Ti)层的厚度不断增加,值得注意的是,波峰处的元素扩散行为和组织转变特征与其他位置存在显著差异;随着退火温度的升高,钢侧基材位错密度显著降低和再结晶晶粒显著增多,钢侧和钛侧小角度晶界减少,大角度晶界增多;退火温度的升高促使钢侧基材内马氏体数量锐减,因此复合板延展性提升,抗拉强度降低;当在750℃退火时,生成的脆性金属间化合物严重削弱了界面结合强度;在550℃退火时,复合板的综合力学性能最佳,抗拉强度为625 MPa,总伸长率为25.2%,剪切强度为291 MPa。
Abstract:Titanium/steel composite plate has good corrosion resistance and relatively low cost, but its poor comprehensive mechanical properties limit the expansion of its application range. How to improve its comprehensive properties has become a research hotspot. The effect of different annealing temperatures on microstructure and mechanical properties at different positions of the interface of pre-corrugated rolled titanium/steel composite plate was studied. The results show that with the increase of annealing temperature, the diffusion distance of Fe and Ti elements across the interface increases, C elements concentrate at the interface, which promotes the nucleation and growth of TiC particles, and the thickness of(α-Ti+β-Ti) layer increases. It is worth noting that the element diffusion behavior and microstructure transformation characteristics at the wave peak are significantly different from those at other positions. With the increase of annealing temperature, the dislocation density of the substrate on the steel side decreases significantly and the recrystallized grains increases significantly, the small angle grain boundaries on the steel side and titanium side decrease, and the large angle grain boundaries increase. With the increase of annealing temperature, the amount of martensite in the steel side substrate decreases sharply, so the ductility of the composite plate increases and the tensile strength decreases. When annealed at 750 ℃, the brittle intermetallic compounds formed seriously weaken the interfacial bonding strength. When annealed at 550 ℃, the composite plate has the best comprehensive mechanical properties, with tensile strength of 625 MPa, total elongation of 25.2%, and shear strength of 291 MPa.
[1] Su H,Luo X B,Chai F,et al.Manufacturing technology and application trends of titanium clad steel plates[J].Journal of Iron and Steel Research International,2015,22(11):977-982.
[2] Li B X,Chen Z J,He W J,et al.Effect of titanium grain orientation on the growth of compounds at diffusion bonded titanium/steel interfaces[J].Materials Characterization,2019,148:243-251.
[3] 王小勇,张海,刘建明,等.热轧不锈钢复合板力学性能及工艺优化[J].中国冶金,2018,28(7):24-27.WANG Xiao-yong,ZHANG Hai,LIU Jian-ming,et al.Mechanical properties and process optimization of hot rolled stainless clad steel plate[J].China Metallurgy,2018,28(7):24-27.
[4] Wang T,Gao X Y,Zhang Z X,et al.Interfacial bonding mechanism of Cu/Al composite plate produced by corrugated cold roll bonding[J].Rare Metals,2021,40:1284-1293.
[5] Guo X W,Ren Z K,Chai Z,et al.Research on microstructure and mechanical properties of TC4/304 clad plates by asymmetric rolling with local strong stress[J].Materials Science and Engineering A,2024,893:146166.
[6] Wang W J,Tu Y M,Liu M H,et al.Effect of inhomogeneous plastic deformation on the interfacial microstructure and properties of titanium/stainless steel[J].Journal of Materials Research and Technology,2023,24:1240-1251.
[7] 董富军,王瑞珍,杨才福,等.热处理工艺对XG630DR钢板组织与力学性能的影响[J].热加工工艺,2019,48(18):133-136.DONG Fu-jun,WANG Rui-zhen,YANG Cai-fu,et al.Effects of heat treatment process on microstructure and mechanical properties of XG630DR steel plate[J].Hot Working Technology,2019,48(18):133-136.
[8] Kumar R R,Gupta R K,Sarkar A,et al.Vacuum diffusion bonding of α-titanium alloy to stainless steel for aerospace applications:interfacial microstructure and mechanical characteristics[J].Materials Characterization,2022,183:111607.
[9] Kundu S,Chatterjee S.Diffusion bonding between commercially pure titanium and micro-duplex stainless steel[J].Materials Science and Engineering A,2008,480(1/2):316-322.
[10] Sunilkumar D,Dey H C,Albert S K,et al.Characterization of interfacial microstructure and mechanical properties of the diffusion bonded CP-Ti to AISI 304L stainless steel[J].Transactions of the Indian Institute of Metals,2021,74:9-20.
[11] Pan X Y,Jiang J,Wan T J,et al.Effect of high-temperature normalizing heat treatment on interfacial microstructure and mechanical properties of rolled titanium steel composite plate[J].Journal of Materials Engineering and Performance,2024,33(11):5517-5528.
[12] 杨德翰.真空热轧钛/钢复合板的界面产物演变机理及工艺控制[D].沈阳:东北大学,2019.YANG De-han.Evolution mechanism and process control of interfacial products with titanium-steel clad plate by vacuum rolling cladding[D].Shenyang:Northeastern University,2019.
[13] 王宽,朱海平,宋振莉,等.钛钢复合板界面特征研究述评[J].功能材料,2017,4(48):25-32.WANG Kuan,ZHU Hai-ping,SONG Zhen-li,et al.Review on characteristics of interface of titanium clad steel plate[J].Journal of Functional Materials,2017,4(48):25-32.
[14] 李标峰.钛与钢及钛复合钢板的焊接性研究(Ⅰ)[J].材料开发与应用,2004,49(1):41-44.LI Biao-feng.Study on the weldability of titanium and steel and titanium clad steel plate(Ⅰ)[J].Development and Application of Materials,2004,49(1):41-44.
[15] Baehr H D.Thermochemical properties of inorganic substances[J].Forschung im Ingenieurwesen,1992,58(4):103.
[16] Xie G M,Yang D H,Luo Z A,et al.The determining role of niobium interlayer on interfacial microstructure and mechanical properties of a vacuum roll-cladding titanium-steel clad plate[J].Materials,2018,10(11):1-13.
[17] Wang S F,Cao L W,Zhang Z.Influence of carbide morphology on the deformation and fracture mechanisms of spheroidized 14CrMoR steel[J].Metals,2019,9(11):1221.
[18] 何广霞,孟宪震,黄军.热处理工艺对14Cr1MoR钢板组织和性能的影响[J].特钢技术,2017,23(2):10-14.HE Guang-xia,MENG Xian-zhen,HUANG Jun.Effect of heat treatment process on structure and properties of 14Cr1MoR steel plate[J].Special Steel Technology,2017,23(2):10-14.
[19] Yu C,Fu L,Xiao H,et al.Effect of carbon content on the microstructure and bonding properties of hot-rolling pure titanium clad carbon steel plates[J].Materials Science and Engineering A,2021,820:141572.
[20] Kang J Y.Qualities of electron backscatter diffraction patterns and image contrast from a ferritic-martensitic steel microstructure[J].Materials Characterization,2022,187:111826.
[21] Wang M L,Luo Z A,Li D,et al.Investigation on the interfacial microstructure and mechanical properties of Ti alloy/HSLA steel clad plates fabricated by vacuum roll-cladding[J].Materials Science and Engineering A,2022,853:143774.
[22] Wu Y,Wang T,Ren Z K,et al.Evolution mechanism of microstructure and bond strength based on interface diffusion and IMCs of Ti/steel clad plates fabricated by double-layered hot rolling[J].Journal of Materials Processing Technology,2022,310:117780.
[23] Wang L,Kamachali R D.CALPHAD integrated grain boundary co-segregation design:Towards safe high-entropy alloys[J].Journal of Alloys and Compounds,2023,933:167717.
[24] 于浩,张道达,肖荣亭,等.回火温度对Q960钢小角度晶界的影响[J].北京科技大学学报,2011,33(8):952-957.YU Hao,ZHANG Dao-da,XIAO Rong-ting,et al.Effect of tempering temperature on low angle grain boundaries in Q960 steel[J].Journal of University of Science and Technology Beijing,2011,33(8):952-957.
[25] Guo X W,Ren Z K,Chai Z,et al.Research on microstructure and mechanical properties of TC4/304 clad plates by asymmetric rolling with local strong stress[J].Materials Science and Engineering A,2024,893:146166.
[26] 薛峰,孟延军,崔会杰,等.淬火温度对14Cr1MoR钢相变的影响[J].金属热处理,2018,43(2):122-126.XUE Feng,MENG Yan-jun,CUI Hui-jie,et al.Effect of quenching temperature on phase transformation of 14Cr1MoR steel[J].Heat Treatment of Metals,2018,43(2):122-126.
基本信息:
DOI:10.13289/j.issn.1009-6264.2024-0594
中图分类号:TG156.2
引用信息:
[1]冯莹莹,单杰,廖宏义,等.退火温度对预制波纹轧制钛/钢复合板组织和性能的影响[J].材料热处理学报,2025,46(10):1-11.DOI:10.13289/j.issn.1009-6264.2024-0594.
基金信息:
国家自然科学基金(52105322)