nav emailalert searchbtn searchbox tablepage yinyongbenwen piczone journalimg journalInfo searchdiv qikanlogo popupnotification paper paperNew
2025, 09, v.46 10-21
轧后热处理对316L/Q370qE不锈钢复合板组织性能的影响
基金项目(Foundation): 江苏省自然科学基金(BK20210889); 江苏省研究生实践创新计划项目(SJYC24_2615); 张家港市科技计划项目(ZKYY2412)
邮箱(Email):
DOI: 10.13289/j.issn.1009-6264.2024-0490
摘要:

研究了轧后控制冷却和回火处理对316L/Q370qE不锈钢复合板组织和性能的影响。采用金相显微镜、扫描电镜(SEM)、能谱仪(EDS)和背散射电子衍射仪(EBSD)分析复合板的显微组织,通过拉剪和拉伸试验测试复合板的界面结合强度和力学性能。结果表明:与水冷-空冷的冷却方式相比,轧后快速水冷至室温的不锈钢复合板脱碳层和渗碳层厚度分别减小至40和20μm;水冷加速碳钢发生低温转变,碳钢脱碳层组织为细晶铁素体和贝氏体,不锈钢渗碳层中的奥氏体晶粒细化,复合界面的拉剪强度显著提高;水冷复合板经回火处理后,复合界面的脱碳层和渗碳层厚度稍有增加,碳钢组织在500℃以上回火时转变为粗晶铁素体和回火索氏体,不锈钢奥氏体组织发生均匀化,复合界面剪切强度降低,但仍高于轧后水冷-空冷的复合板;轧后水冷至室温后再经450℃回火1 h制备的不锈钢复合板具有较好的综合力学性能,界面拉剪强度为364 MPa,屈服强度和抗拉强度分别为594和661 MPa,断后伸长率为18%。

Abstract:

The effect of controlled cooling and tempering treatment after rolling on microstructure and properties of 316L/Q370qE stainless steel clad plate was studied. The microstructure of the clad plate was analyzed using metallographic microscope, scanning electron microscopy(SEM), energy dispersive spectrometer(EDS), and backscattered electron diffraction(EBSD) technique. The interfacial bonding strength and mechanical properties of the clad plate were tested by tensile shear and tensile tests. The results show that compared with the water cooling and air cooling, the thickness of the decarburization layer and carburized layer of the stainless steel clad plate quickly cooled to room temperature after rolling is reduced to 40 and 20 μm, respectively. Water cooling accelerates the low-temperature transformation of carbon steel, the microstructure of the decarburization layer of carbon steel is composed of fine-grained ferrite and bainite, the austenite grains in the carburized layer of the stainless steel are refined, and the tensile and shear strength of the composite interface is significantly improved. After tempering treatment, the thickness of the decarburization layer and carburized layer at the composite interface of the water-cooled clad plate slightly increases. The carbon steel structure transforms into coarse-grained ferrite and tempered sorbite when tempered above 500 ℃, and the stainless steel austenite structure becomes uniform. The shear strength at the composite interface decreases, but it is still higher than that of the water-and-air-cooled clad plate after rolling. The stainless steel clad plate prepared by water cooling to room temperature after rolling and tempering at 450 ℃ for 1 h has good comprehensive mechanical properties, with the interface tensile shear strength of 364 MPa, the yield strength and tensile strength of 594 MPa and 661 MPa,respectively, and the elongation of 18%.

参考文献

[1]李龙,张心金,刘会云,等.不锈钢复合板的生产技术及工业应用[J].轧钢,2013,30(3):43-47.LI Long,ZHANG Xin-jin,LIU Hui-yun,et al. Production technology and application of stainless steel clad plate[J]. Steel Rolling,2013,30(3):43-47.

[2]谢广明,骆宗安,王光磊,等.真空轧制不锈钢复合板的组织和性能[J].东北大学学报(自然科学版),2011,32(10):1398-1401.XIE Guang-ming,LUO Zong-an,WANG Guang-lei,et al. Microstructure and properties of stainless steel clad plate by vacuum rolling cladding[J]. Journal of Northeastern University(Natural Science),2011,32(10):1398-1401.

[3] Chen Z Y,Qi J J,Liu H Q,et al. Research on production technology of asymmetrically hot rolled stainless steel clad plate[J].Materials Science Forum,2020,996:185-190.

[4]焦少阳,董建新,张麦仓,等.双金属热轧复合的界面结合影响因素及结合机理[J].材料导报,2009,23(1):59-62.JIAO Shao-yang,DONG Jian-xin,ZHANG Mai-cang,et al. Influencing factors and bonding mechanism of hot rolling bonded bi metals[J]. Materials Review,2009,23(1):59-62.

[5]代响林,刘宝玺,马久乐,等.真空热轧法制备不锈钢复合板组织和力学性能[J].钢铁,2017,52(2):65-70.DAI Xiang-lin,LIU Bao-xi,MA Jiu-le,et al. Microstructure and mechanical properties of stainless steel clad plate fabricated by vacuum hot rolling[J]. Iron and Steel,2017,52(2):65-70.

[6]黄郦,张明亚,李景辉,等.热轧对304不锈钢/Q235碳钢复合板界面组织的影响[J].材料热处理学报,2022,43(12):100-106.HUANG Li,ZHANG Ming-ya,LI Jing-hui,et al. Effect of hot rolling on interface microstructure of 304 stainless steel/Q235 carbon steel composite plate[J]. Transactions of Materials and Heat Treatment,2022,43(12):100-106.

[7] Liu B X,Wang S,Fang W,et al. Meso and microscale clad interface characteristics of hot-rolled stainless steel clad plate[J].Materials Characterization,2019,148:17-25.

[8] Liu B X,An Q,Yin F X,et al. Interface formation and bonding mechanisms of hot-rolled stainless steel clad plate[J]. Journal of Materials Science,2019,54:11357-11377.

[9]邵春娟,镇凡,陆春洁,等.热轧S31603/Q370q不锈钢复合板界面特征分析[J].钢铁研究学报,2022,34(2):181-188.SHAO Chun-juan,ZHEN Fan,LU Chun-jie,et al. Analysis on interface characteristics of hot-rolled S31603/Q370q stainless clad steel plate[J]. Journal of Iron and Steel Research,2022,34(2):181-188.

[10]镇凡,刘静,黄峰,等.变形率对316L/Q420不锈钢复合板界面结构和结合性能的影响[J].材料热处理学报,2023,44(1):22-30.ZHEN Fan,LIU Jing,HUANG Feng,et al. Effect of deformation rate on interface microstructure and bonding properties of 316L/Q420 stainless steel clad plate[J]. Transactions of Materials and Heat Treatment,2023,44(1):22-30.

[11]于涛,井玉安,张亚樵,等.不锈钢复合板界面组织形貌[J].钢铁,2018,53(11):63-69.YU Tao,JING Yu-an,ZHANG Ya-qiao,et al. Interfacial microstructure morphologies of stainless steel clad plate[J]. Iron and Steel,2018,53(11):63-69.

[12]曾周燏,江姗,李东晖. TMCP工艺轧制桥梁用不锈钢复合板的组织与性能[J].中国冶金,2017,27(6):19-23.ZENG Zhou-yu,JIANG Shan,LI Dong-hui. Microstructures and properties of stainless steel clad plate used for bridge rolled by thermal mechanical control process[J]. China Metallurgy,2017,27(6):19-23.

[13]金贺荣,张春雷,韩雪艳,等.热处理对316L/Q345R不锈钢复合板显微组织与力学性能的影响[J].中国有色金属学报,2015,25(4):952-958.JIN He-rong,ZHANG Chun-lei,HAN Xue-yan,et al. Effect of heat treatment on microstructure and mechanical properties of 316L/Q345R stainless steel clad plate[J]. The Chinese Journal of Nonferrous Metals,2015,25(4):952-958.

[14]李龙,祝志超,张心金,等.利用控轧控冷技术开发热轧不锈钢复合板的实验研究[J].材料工程,2015,43(7):62-67.LI Long,ZHU Zhi-chao,ZHANG Xin-jin,et al. Experimental study on hot rolled stainless steel clad plate produced by TMCP[J].Journal of Materials Engineering,2015,43(7):62-67.

[15]李国鹏,骆宗安,杨子江,等.轧后冷却速度对真空热轧N08367/Q345R复合板组织与性能的影响[J].热加工工艺,2022,51(18):76-79.LI Guo-peng,LUO Zong-an,YANG Zi-jiang,et al. Effects of cooling rate after rolling on the microstructure and properties of N08367/Q345R clad plate by vacuum hot rolling[J]. Hot Working Technology,2022,51(18):76-79.

[16]王明坤,骆宗安,曾周燏,等.热处理工艺对超级奥氏体不锈钢复合板组织与性能的影响[J].东北大学学报(自然科学版),2023,44(6):777-782.WANG Ming-kun,LUO Zong-an,ZENG Zhou-yu,et al. Effect of heat treatment on microstructure and mechanical properties of super austenitic stainless steel clad plate[J]. Journal of Northeastern University(Natural Science),2023,44(6):777-782.

[17]刘海璋,毕宗岳,田磊,等.不锈钢2205/X65复合板热处理工艺研究[J].热加工工艺,2019,48(2):207-210.LIU Hai-zhang,BI Zong-yue,TIAN Lei,et al. Study on heat treatment process of 2205 stainless steel/X65 composite plate[J]. Hot Working Technology,2019,48(2):207-210.

[18] Li L Y,Zhao B S,Chen Y T,et al. Effect of heat treatment on microstructure and properties evolution of stainless steel cladding plate[J]. Materials,2023,16(13):4809.

[19] Hang P,Zhao B,Zhou J,et al. Effect of heat treatment on crevice corrosion behavior of 304 stainless steel clad plate in seawater environment[J]. Materials,2023,16(11):3952.

[20] Yang Y H,Li H J,Jiang Z Z,et al. Simultaneously enhanced strength-ductility synergy and corrosion resistance in liquid-solid bonded stainless steel cladding carbon steel plate by hot rolling and annealing treatment[J]. Materials Science and Engineering A,2023,871:144928.

[21]刘燕平,李平仓,刘凯,等.热处理工艺对2205-Q345R爆炸复合板性能的影响[J].中国舰船研究,2016,11(3):128-132.LIU Yan-ping,LI Ping-cang,LIU Kai,et al. Effect of heat treatments on the properties of explosive clad plates 2205 DSS-Q345R[J]. Chinese Journal of Ship Research,2016,11(3):128-132.

[22]沈春豫,樊科社,王俊,等.热处理对爆炸焊接316L/Q235B复合板组织和性能的影响[J].金属热处理,2019,44(9):204-208.SHEN Chun-yu,FAN Ke-she,WANG Jun,et al. Effect of heat treatment on the microstructure and property of 316L/Q235B explosive welding clad plate[J]. Heat Treatment of Metals,2019,44(9):204-208.

[23] Ding Y,Cao R,Yan Y. Effects of heat treatment on fracture mechanism of martensite/austenite MLS composite plates by hot roll bonding[J]. Materials Science and Engineering A,2020,773:138727.

[24] Li H,Zhang L Y,Zhang B Y,et al. Effect of heat treatment on the microstructure and corrosion resistance of stainless/carbon steel bimetal plate[J]. Advances in Materials Science and Engineering,2020(1):1280761.

[25]吕泽华,张志雄,赵敬伟,等.热轧双覆层不锈钢/碳钢复合板组织与性能研究[J].塑性工程学报,2020,27(7):168-175.LüZe-hua,ZHANG Zhi-xiong,ZHAO Jing-wei,et al. Research on the microstructure and properties of double cladding stainless steel/carbon steel clad plate by hot rolling[J]. Journal of Plasticity Engineering,2020,27(7):168-175.

[26]金玉龙.不锈钢复合板碳扩散及组织性能研究[D].秦皇岛:燕山大学,2019.JIN Yu-long. Study on carbon diffusion and microstructure of stainless steel clad plates[D]. Qinhuangdao:Yanshan University,2019.

[27]李龙,张心金,祝志超,等.真空热轧不锈钢复合板界面结合行为的研究[J].材料与冶金学报,2014,13(1):46-50.LI Long,ZHANG Xin-jin,ZHU Zhi-chao,et al. Investigation on bonding of stainless steel clad plate by vacuum hot rolling[J].Journal of Materials and Metallurgy,2014,13(1):46-50.

[28]黄强.轧制工艺对不锈钢复合板结合质量的影响[D].马鞍山:安徽工业大学,2019.HUANG Qiang. Influences of rolling process on bonding quality of stainless steel clad plate[D]. Maanshan:Anhui University of Technology,2019.

[29] Chen C X,Liu M Y,Liu B X,et al. Tensile shear sample design and interfacial shear strength of stainless steel clad plate[J].Fusion Engineering and Design,2017,125:431-441.

[30] Liu B X,Wang S,Fang W,et al. Microstructure and mechanical properties of hot rolled stainless steel clad plate by heat treatment[J]. Materials Chemistry and Physics,2018,216:460-467.

基本信息:

DOI:10.13289/j.issn.1009-6264.2024-0490

中图分类号:TG142.71;TG156

引用信息:

[1]李小兵,陈民,蒋国民等.轧后热处理对316L/Q370qE不锈钢复合板组织性能的影响[J].材料热处理学报,2025,46(09):10-21.DOI:10.13289/j.issn.1009-6264.2024-0490.

基金信息:

江苏省自然科学基金(BK20210889); 江苏省研究生实践创新计划项目(SJYC24_2615); 张家港市科技计划项目(ZKYY2412)

检 索 高级检索

引用

GB/T 7714-2015 格式引文
MLA格式引文
APA格式引文