249 | 0 | 51 |
下载次数 | 被引频次 | 阅读次数 |
采用热压烧结制备了TiC10 vol%/Cu复合材料,分别分析了TiC化学镀铜改性和原位形成对TiC/Cu复合材料性能的影响,探讨了固态下TiC颗粒原位形成机制。结果表明:TiC颗粒不经过敏化和活化处理同样可以获得较好的镀铜效果,既降低了镀铜成本,又避免了杂质元素的掺入;固态原位形成TiC的大小与分布受石墨粉的大小和分布控制,而TiC颗粒的形成过程受Ti原子扩散所控制;原位形成的TiC/Cu复合材料具有较高的致密度和较低的膨胀系数,但导电率要低于化学镀铜TiC试样,同时,TiC经化学镀铜处理后,同样可以显著降低复合材料的膨胀系数。
Abstract:TiC10 vol%/Cu composites were prepared by hot pressing sintering, and the effects of TiC chemical copper plating modification and in-situ formation on the properties of the TiC/Cu composites were analyzed. The in-situ formation mechanism of TiC particles in the solid state was discussed. The results show that TiC particles can achieve good copper plating effect without sensitization and activation treatment, which not only reduces the cost of copper plating but also avoids the doping of impurity elements. The size and distribution of in-situ formed TiC in solid state are controlled by the size and distribution of graphite, while the formation process of TiC particles is controlled by the diffusion of Ti atoms. The in-situ formed TiC/Cu composite has high density and low expansion coefficient, but its conductivity is lower than that of chemical copper-plated TiC/Cu sample. Meanwhile, TiC treated with chemical copper plating can significantly reduce the expansion coefficient of the composites.
[1] 代雪琴,贾淑果,范俊玲,等.高强高导铜合金的强化机理与研究热点[J].材料热处理学报,2021,42(10):18-26.DAI Xue-qin,JIA Shu-guo,FAN Jun-ling,et al.Strengthening mechanism and research focus of high strength andhigh conductivity copper alloy[J].Transactions of Materials and Heat Treatment,2021,42(10):18-26.
[2] Batra I S,Dey G K,Kulkarni U D,et al.Precipitation in a Cu-Cr-Zr alloy[J].Materials Science and Engineering A,2003,356(1/2):32-36.
[3] Lu D P,Wang J,Zeng W J,et al.Study on high-strength and high-conductivity Cu-Fe-P alloys[J].Materials Science and Engineering A,2006,421(1/2):254-259.
[4] Chen F,Ying J,Wang Y,et al.Effects of graphene content on the microstructure and properties of copper matrix composites[J].Carbon,2016,96:836-842.
[5] Gautam Y K,Somani N,Kumar M,et al.A review on fabrication and characterization of copper metal matrix composite (CMMC)[C]//AIP Conference Proceedings.AIP Publishing,2018.
[6] Kim K T,Cha S I,Hong S H,et al.Microstructures and tensile behavior of carbon nanotube reinforced Cu matrix nanocomposites[J].Materials Science and Engineering A,2006,430(1/2):27-33.
[7] Semboshi S,Al-Kassab T,Gemmab R,et al.Microstructural evolution of Cu-1 at percent Ti alloy aged in a hydrogen atmosphere and its relation with the electrical conductivity[J].Ultramicroscopy,2009,19:593-598.
[8] Guo M X,Shen K,Wang M P.Relationship between microstructure,properties and reaction conditions for Cu-TiB2 alloys prepared by in situ reaction[J].Acta Materialia,2009,57:4568-4579.
[9] Akhtar F,Askari S J,Shah K A,et al.Microstructure,mechanical properties,electrical conductivity and wear behavior of high volume TiC reinforced Cu-matrix composites[J].Materials Characterization,2009,60(4):327-336.
[10] 刘勇,李辉,杨志强,等.TiC粒径对颗粒增强铜基复合材料高温变形行为的影响[J].材料热处理学报,2015,36(8):1-5.LIU Yong,LI Hui,YANG Zhi-qiang,et al.Effect of TiC particle size of particle-strengthen Cu-based composites on deformation behavior at high temperature[J].Transactions of Materials and Heat Treatment,2015,36(8):1-5.
[11] Wang F L,Li Y P,Wang X Y,et al.In-situ fabrication and characterization of ultrafine structured Cu-TiC composites with high strength and high conductivity by mechanical milling[J].Journal of Alloys and Compounds,2016,657:122-132.
[12] Somani N,Gupta N K.Effect of TiC nanoparticles on microstructural and tribological properties of Cu-TiC nano-composites[J].Proceedings of the Institution of Mechanical Engineers,Part B:Journal of Engineering Manufacture,2022,236(4):319-336.
[13] Lv Z,Sha J,Lin G,et al.Mechanical and thermal expansion behavior of hybrid aluminum matrix composites reinforced with SiC particles and short carbon fibers[J].Journal of Alloys and Compounds,2023,947:169550.
[14] Baig M M A,Hassan S F,Saheb N,et al.Metal matrix composite in heat sink application:Reinforcement,processing,and properties[J].Materials,2021,14(21):6257.
[15] 张剑平.TiB2/Cu复合材料微波烧结工艺及性能研究[D].南昌:南昌大学,2013.ZHANG Jian-ping.Study on microwave sintering technology and properties of TiB2/Cu composites[D].Nanchang:Nanchang University,2013.
[16] Pourfereidouni A,Akbari G H.Development of nano-structure Cu-Ti alloys by mechanical alloying process[J].Advanced Materials Research,2014,829:168-172.
[17] Yamane T,Okubo H,Hisayuki K,et al.Solid solubility of carbon in copper mechanically alloyed[J].Journal of Materials Science Letters,2001,20:259-260.
[18] Nguyen Thi Hoang O,Nguyen Hoang V,Kim J S,et al.Structural investigations of TiC-Cu nanocomposites prepared by ball milling and spark plasma sintering[J].Metals,2017,7(4):123.
[19] Zhuang J,Liu Y B,Cao Z Y,et al.The influence of technological process on dry sliding wear behaviour of titanium carbide reinforcement copper matrix composites[J].Materials Transactions,2010,51(12):2311-2317.
[20] Wang X,Ding H,Qi F,et al.Mechanism of in situ synthesis of TiC in Cu melts and its microstructures[J].Journal of Alloys and Compounds,2017,695:3410-3418.
[21] Javdani A,Pouyafar V,Ameli A,et al.Blended powder semisolid forming of Al7075/Al2O3 composites:investigation of microstructure and mechanical properties[J].Materials & Design,2016,109:57-67.
[22] Rahimian M,Ehsani N,Parvin N,et al.The effect of sintering temperature and the amount of reinforcement on the properties of Al-Al2O3 composite[J].Materials & Design,2009,30(8):3333-3337.
[23] Shu K M,Tu G C.The microstructure and the thermal expansion characteristics of Cu/SiCp composites[J].Materials Science and Engineering A,2003,349(1/2):236-247.
[24] Zhu R,Zhang H,Wang J,et al.Effect of WC content on microstructure and element diffusion of nano WC-Co-TiC/304 stainless steel composites for micro drill[J].Metals,2023,13(3):475.
[25] Guo X H,Song K X,Liang S H,et al.Thermal expansion behavior of MgO/Cu composite with lower MgO volume fraction[J].Materials Research Bulletin,2012,47(11):3211-3215.
[26] Xue C,Yu J K,Zhu X M.Thermal properties of diamond/SiC/Al composites with high volume fractions[J].Materials & Design,2011,32(8/9):4225-4229.
[27] Abyzov A M,Kidalov S V,Shakhov F M.High thermal conductivity composite of diamond particles with tungsten coating in a copper matrix for heat sink application[J].Applied Thermal Engineering,2012,48:72-80.
[28] Vaidya R U,Chawla K K.Thermal expansion of metal-matrix composites[J].Composites Science and Technology,1994,50(1):13-22.
[29] Vo H T,Todd M,Shi F G,et al.Towards model-based engineering of underfill materials:CTE modeling[J].Microelectronics Journal,2001,32(4):331-338.
[30] Kim J,Kang S.Elastic and thermo-physical properties of TiC,TiN,and their intermediate composition alloys using ab initio calculations[J].Journal of Alloys and Compounds,2012,528:20-27.
[31] Holzer H,Dunand D C.Phase transformation and thermal expansion of Cu/ZrW2O8 metal matrix composites[J].Journal of Materials Research,1999,14(3):780-789.
基本信息:
DOI:10.13289/j.issn.1009-6264.2024-0186
中图分类号:TB333
引用信息:
[1]张剑平,孙涛,罗军明等.热压烧结制备TiC/Cu复合材料的热膨胀性能[J].材料热处理学报,2025,46(03):44-50.DOI:10.13289/j.issn.1009-6264.2024-0186.
基金信息:
国家自然科学基金(52161040)