28 | 0 | 21 |
下载次数 | 被引频次 | 阅读次数 |
采用深冷挤出切削法(CT-EM)制备了6061铝合金切削带材,研究了CT-EM切屑与常温挤出切削(RT-EM)切屑的微观组织、热稳定性及摩擦磨损性能。结果表明:在相同的切削速度下,CT-EM制备的切屑要比RT-EM制备的切屑硬度高13.2%;在不同的摩擦载荷下,CT-EM切屑的摩擦系数均比RT-EM切屑的摩擦系数低,表明其耐磨性能有所提升;随着摩擦载荷的增加,切屑的摩擦系数均降低;经250℃退火处理1 h后,CT-EM切屑组织内的位错密度有所降低,晶粒尺寸保持在超细晶的范围之内,可以维持较好的热稳定性。经450℃退火处理1 h后,CT-EM切屑组织内的位错消失,晶粒尺寸增大为微米级,失去热稳定性;在150~450℃退火处理1 h后,CT-EM切屑的硬度先上升后快速下降,最后趋于稳定;在250℃退火处理0.5~2 h后,CT-EM切屑的硬度在刚开始的0.5 h内快速降低,之后逐渐趋于稳定。
Abstract:6061 aluminum alloy cutting strips were prepared using the cryogenic temperature extrusion machining(CT-EM) method, and microstructure, thermal stability, and friction and wear properties of CT-EM chips and room temperature extrusion machining(RT-EM)chips were studied. The results show that at the same cutting speed, the chips prepared by CT-EM have a 13. 2% higher hardness than those prepared by RT-EM. Under different friction loads, the friction coefficient of CT-EM chips is lower than that of RT-EM chips,indicating an improvement in their wear resistance. As the friction load increases, the friction coefficient of the chips both decreases. After annealing at 250 ℃ for 1 h, the dislocation density in the CT-EM chips structure decreases, and the grain size remains within the range of ultrafine grains, which can maintain good thermal stability. After annealing at 450 ℃ for 1 h, the dislocations in the CT-EM chips structure disappear, and the grain size increases to the micrometer level, resulting in loss of thermal stability. After annealing at 150-450 ℃ for 1 h, the hardness of the CT-EM chips first increases, then rapidly decreases, and finally stabilizes. After annealing at 250 ℃for 0. 5-2 h, the hardness of the CT-EM chips rapidly decreases within the first 0. 5 h and gradually stabilizes thereafter.
[1]袁滔,赵圆杰,袁杰,等. 6061铝合金均匀化处理及Al MnFeSi相的演变规律[J].有色金属工程,2024,1533:1-8.YUAN Tao,ZHAO Yuan-jie,YUAN Jie,et al. Homogenization of 6061 aluminum alloy and evolution of Al MnFeSi phase[J].Nonferrous Metals Engineering,2024,1533:1-8.
[2] Gussev M N,Sridharan N,Norfolk M,et al. Effect of post weld heat treatment on the 6061 aluminum alloy produced by ultrasonic additive manufacturing[J]. Materials Science and Engineering A,2017,684:606-616.
[3] Assefa A,Raheem A,Eyob M. Experimental investigation of friction stir welding on 6061-T6 aluminum alloy using taguchi-based gra[J]. Metals,2020,10(11):1480-1480.
[4]王思雪.铸轧6061铝合金轧后冷速控制及组织性能研究[D].鞍山:辽宁科技大学,2019.WANG Si-xue. Study on post-rolling cooling rate,microstructure and properties of twin-roll casting 6061 aluminum alloy[D].Anshan:University of Science and Technology Liaoning,2019.
[5]刘高阳.超细晶/纳米晶材料超低温塑性变形行为与机理研究[D].北京:北方工业大学,2024.LIU Gao-yang. Ultra-low temperature plastic deformation behaviour and mechanism of ultra-fine/nanocrystalline materials[D].Beijing:North China University Of Technology,2024.
[6]刘满平,薛周磊,彭振,等.后时效对超细晶6061铝合金微观结构与力学性能的影响[J].金属学报,2023,59(5):657-667.LIU Man-jun,XUE Zhou-lei,PENG Zhen,et al. Effect of post-aging on microstructure and mechanical properties of an ultrafinegrained 6061 aluminum alloy[J]. Acta Metallurgica Sinica,2023,59(5):657-667.
[7]刘昊天,申红斌,肖瑞,等. 1420铝锂合金板材细晶化及超塑性能试验研究[J].锻压技术,2022,47(3):65-71.LIU Hao-tian,SHEN Hong-bin,XIAO Rui,et al. Experimental research on grain refining and superplasticity for 1420 Al-Li alloy sheet[J]. Forging and Stamping Technology,2022,47(3):65-71.
[8]曾崎,张英波,庄野,等.半固态冷却方式对二次挤压Mg-3. 88Zn-1. 56Gd合金组织和力学性能的影响[J].稀有金属材料与工程,2022,51(7):2625-2630.ZENG Qi,ZHANG Ying-bo,ZHUANG Ye,et al. Effect of semi-solid cooling methods on microstructure and mechanical properties of secondary extruded Mg-3. 88Zn-1. 56Gd Alloy[J]. Rare Metal Materials and Engineering,2022,51(7):2625-2630.
[9]张苏鹏,王军丽,章震威,等.等通道转角挤压制备超细晶材料的最新研究进展[J].材料热处理学报,2020,41(3):1-14.ZHANG Su-peng,WANG Jun-li,ZHANG Zhen-wei,et al. Latest research progress in the preparation of ultra-fine grain materials by equal channel angular pressing[J]. Transactions of Materials and Heat Treatment,2020,41(3):1-14.
[10] Li B,Teng B,Zhu Z. Solid state recycling of Mg-Gd-Y-Zn-Zr alloy chips by spark plasma sintering[J]. Journal of Magnesium and Alloys,2019,8(4):1154-1165.
[11] Ibrahim M A E A. Wear and mechanical properties of Al chips and Al chips composites recycled by high-pressure torsion[J].Journal of Materials Research and Technology,2021,14:407-427.
[12] Krzysztof T. Relationship of microstructure and properties of high-purity titanium manufactured by unconventional method of chips recycling[J]. Journal of Manufacturing Processes,2022,77:426-438.
[13] Rahmatabadi D, Shahmirzaloo A, Hashemi R, et al. Using digital image correlation for characterizing the elastic and plastic parameters of ultrafine-grained Al 1050 strips fabricated via accumulative roll bonding process[J]. Materials Research Express,2019,6(8):086542.
[14]金玉花,周子正,邢逸初,等.滚动轧制对7050铝合金FSW接头组织的影响[J].兰州理工大学学报,2023,49(4):30-34.JIN Yu-hua,ZHOU Zi-zheng,XING Yi-chu,et al. Effect ofrolling on microstructure of 7050 aluminum alloy FSW joint[J]. Journal of Lanzhou University of Technology,2023,49(4):30-34.
[15]邹银辉,邓文君.塑性流动挤出切削制备梯度结构铝薄板的仿真分析[J].制造技术与机床,2021,(3):92-97.ZHOU Yin-hui, DENG Wen-jun. Simulation analysis of aluminum sheets with gradient structures produced by plastic flow machining[J]. Manufacturing Technology and Machine Tool,2021,(3):92-97.
[16]许兵.喷射成形7034铝合金往复挤压及热处理工艺研究[D].合肥:合肥工业大学,2021.XU Bing. Study on cyclic extrusion compression and heat treatment process of 7034 aluminum alloy by spray forming[D]. Hefei:Hefei University of Technology,2021.
[17]张翠翠,吴化,于晓丰.搅拌摩擦加工制备Al6061/Si C复合材料的耐蚀性研究[J].表面技术,2021,50(5):315-320.ZHANG Cui-cui,WU Hua,YU Xiao-feng. Investigation on corrosion resistance of Al6061/Si C composite prepared with friction stir processing[J]. Surface Technology,2021,50(5):315-320.
[18]殷晓龙.深冷挤出切削制备超细晶7075铝合金的研究[D].广州:华南理工大学,2020.YIN Xiao-long. Research on fabrication of ultra-fine grained al 7075 alloy via cryogenic temperature extrusion machining[D].Guangzhou:Journal of South China University of Technology,2020.
[19] Abbasi-Baharanchi M, Karimzadeh F, Enayati M H. Thermal stability evaluation of nanostructured Al6061 alloy produced by cryorolling[J]. Transactions of Nonferrous Metals Society of China,2017,27(4):754-762.
[20] Liu F,Kirchheim R. Nano-scale grain growth inhibited by reducing grain boundary energy through solute segregation[J]. Journal of Crystal Growth,2003,264(1):385-391.
[21]殷晓龙,邓文君,张嘉阳,等.超低温挤出切削7075铝合金的组织与性能[J].华南理工大学学报(自然科学版),2019,47(5):89-95.YIN Xiao-long,DENG Wen-jun,ZHANG Jia-yang,et al. Microstructure and properties of ultra-low temperature extrusion cutting7075 aluminum alloy[J]. Journal of South China University of Technology(Natural Science Edition),2019,47(5):89-95.
[22]高崇金,皮云云.加工参数对大应变挤出切削6061铝合金切削力影响的研究[J].工具技术,2022,56(12):116-121.GAO Chong-jin,PI Yun-yun. Research on influence of processing parameters on cutting force of 6061 aluminum alloy in large strain extrusion machining[J]. Tool Engineering,2022,56(12):116-121.
[23]吴红艳,杨丽娟,杜林秀,等.退火工艺对深冷轧制6061铝合金显微组织及力学性能的影响[J].材料热处理学报,2020,41(5):72-78.WU Hong-yan,YANG Li-juan, DU Lin-xiu, et al. Effect of annealing process on microstructure and mechanical properties of cryorolled 6061 aluminum alloy[J]. Transactions of Materials and Heat Treatment,2020,41(5):72-78.
[24]高东强,曾行军,何乃如,等.低温切削技术在难加工材料加工中的应用[J].制造技术与机床,2020(6):39-43.GAO Dong-qiang,ZENG Xing-jun,HE Nai-ru,et al. Application of low temperature cutting technology in the processing of difficult materials[J]. Manufacturing Technology and Machine Tool,2020(6):39-43.
[25]殷晓龙,王志林,王婉,等.深冷挤出切削制备超细晶7075铝合金的组织、性能及时效行为研究[J].材料导报,2023,37(22):190-195.YIN Xiao-long,WANG Zhi-lin,WANG Wan,et al. Research on microstructure,mechanical properties and ageing behaviors of ultra-fine grained 7075 aluminum alloy fabricated by cryogenic temperature extrusion machining[J]. Materials Reports,2023,37(22):190-195.
[26]孙健豪.预变形对奥氏体不锈钢形变诱发马氏体相变的微观机理研究[D].西安:西安理工大学,2021.SUN Jian-hao. Microme hanism of pre-deformation on deformation induced martensitic transforamtion of austenitic staninless steels[D]. Xi’an:Xi’an University of Technology 2021.
[27]丁永根.基于高压扭转变形的Al-Zn-Mg-Cu合金微观组织及力学性能研究[D].合肥:合肥工业大学,2017.DING Yong-gen. Research on microstructure and mechanical properties of Al-Zn-Mg-Cu aluminum alloy deformed by high pressure torsion[D]. Hefei:Hefei University of Technology,2017.
基本信息:
DOI:10.13289/j.issn.1009-6264.2024-0360
中图分类号:TG146.21;TG376;TG506
引用信息:
[1]殷晓龙,吴亚威,郭润宇等.深冷挤出切削制备超细晶6061铝合金的热稳定性及摩擦磨损性能[J].材料热处理学报,2025,46(06):26-34.DOI:10.13289/j.issn.1009-6264.2024-0360.
基金信息:
国家自然科学基金(52105499); 中原工学院学科青年硕导培育计划项目(SD202406); 中原工学院基本科研业务费专项资金项目(K2022YY001); 中原工学院青年骨干教师资助项目(2024XQG09)