115 | 0 | 70 |
下载次数 | 被引频次 | 阅读次数 |
采用选区激光熔化(SLM)制备了一种高γ′相含量的镍基高温合金,研究了不同温度的亚固溶处理对其微观组织的影响。结果表明:沉积态样品的显微组织为沿沉积方向定向生长的柱状晶,样品中再结晶晶粒比例约为2.47%;随着亚固溶温度的升高,样品内部位错密度逐渐降低,再结晶比例呈上升趋势;时效处理后,组织中粗大的γ′相由筏状向立方状转变;经1240℃亚固溶处理0.5 h后,样品的再结晶占比为3.24%,组织中粗大γ′相阻碍了晶界迁移,有效抑制了再结晶的扩展,使样品保持柱状晶结构;经1250℃亚固溶处理0.5 h后,样品内部位错密度最低,再结晶占比达到42.88%,组织由细小的柱状晶转变为等轴晶。
Abstract:A nickel-based superalloy with high γ′ phase content was prepared by selective laser melting(SLM), and the effect of sub-solvus treatment at different temperatures on its microstructure was studied. The results show that the microstructure of the as-deposited sample consists of columnar grains with directional growth along the deposition direction, and the proportion of recrystallized grains in the samples is about 2.47%. With the increase of sub-solvus temperature, the dislocation density inside the sample gradually decreases, and the recrystallization proportion shows an upward trend. After aging treatment, the coarse γ′ phase in the microstructure transforms from raft shaped to cubic shaped. After sub-solvus treatment at 1240 ℃ for 0.5 h, the proportion of recrystallization in the sample is 3.24%. The coarse γ′ phase in the microstructure hinders the grain boundary migration, and effectively suppressing the expansion of recrystallization and maintaining the columnar grain structure of the sample. After sub-solvus treatment at 1250 ℃ for 0.5 h, the internal dislocation density of the sample is the lowest, the proportion of recrystallization reaches 42.88%, and the microstructure changes from small columnar grains to equiaxed grains.
[1] Mostafaei A,Ghiaasiaan R,Ho I T,et al.Additive manufacturing of nickel-based superalloys:A state-of-the-art review on process-structure-defect-property relationship[J].Progress in Materials Science,2023,136(7):101108.
[2] Tang Y T,Panwisawas C,Ghoussoub J N,et al.Alloys-by-design:Application to new superalloys for additive manufacturing[J].Acta Materialia,2021,202:417-436.
[3] 王楠,李金国,刘纪德,等.选区激光熔化镍基高温合金组织及缺陷研究进展[J].稀有金属材料与工程,2024,53(1):257-269.WANG Nan,LI Jin-guo,LIU Ji-de,et al.A review of research of microstructure and defects in Ni-based superalloys fabricated by selective laser melting[J].Rare Metal Materials and Engineering,2024,53(1):257-269.
[4] 张海洲,白洁,马瑞,等.激光选区熔化成形技术在航空航天发动机制造领域的研究与应用现状[J].推进技术,2023,44(3):6-21.ZHANG Hai-zhou,BAI Jie,MA Rui,et al.Current progress and application of selective laser melting technology in aerospace engine manufacturing[J].Journal of Propulsion Technology,2023,44(3):6-21.
[5] 刘泊良,马志毅,赵军,等.选区激光熔化制备镍基高温合金的研究进展[J].铸造,2023,72(5):485-495.LIU Bo-liang,MA Zhi-yi,ZHAO Jun,et al.Research progress on selective laser melting for nickel-base superalloy[J].Foundry,2023,72(5):485-495.
[6] Zhang M,Zhang B,Wen Y,et al.Research progress on selective laser melting processing for nickel-based superalloy[J].International Journal of Minerals,Metallurgy and Materials,2022,29(3):369-388.
[7] 宋振峰,高双,何博,等.选区激光熔化IN625镍基高温合金长期热暴露组织及性能演变规律研究[J].中国激光,2022,49(14):350-359.SONG Zhen-feng,GAO Shuang,HE Bo,et al.Long-time thermal exposure microstructures and performance evolution law of selective laser melting IN625 nickel-based superalloy[J].Chinese Laser,2022,49(14):350-359.
[8] 张玮,姜胜强,段春艳,等.IN718镍基高温合金粉末的铺粉均匀性[J].机械工程材料,2023,47(2):21-25.ZHANG Wei,JIANG Sheng-qiang,DUAN Chun-yan,et al.Powder spreading uniformity of IN718 nickel-based superalloy powder[J].Materials for Mechanical Engineering,2023,47(2):21-25.
[9] 史松宜,张亚玮,吕旭东.固溶处理对激光选区熔化In 718合金组织及持久性能的影响[J].材料热处理学报,2020,41(6):69-76.SHI Song-yi,ZHANG Ya-wei,Lü Xu-dong,et al.Effect of solid solution treatment on microstructure and stress rupture properties of Inconel 718 alloy fabricated by selective laser melting[J].Transactions of Materials and Heat Treatment,2020,41(6):69-76.
[10] 张宇,沈超,张鹏,等.基于选区激光熔化的镍基单晶高温合金修复[J].中国有色金属学报,2024,28(2):1-21.ZHANG Yu,SHEN Chao,ZHANG Peng,et al.Repair of nickel-based single crystal superalloy based on selective laser melting[J].The Chinese Journal of Nonferrous Metals,2024,28(2):1-21.
[11] 李尧,寇浩南,李梦阳,等.激光增材制造沉淀强化镍基高温合金热裂纹研究进展[J].表面技术,2024,53(7):1-14.LI Yao,KOU Hao-nan,LI Meng-yang,et al.Research progress on hot cracking in precipitation-strengthened nickel-based superalloys fabricated by laser additive manufacturing[J].Surface Technology,2024,53(7):1-14.
[12] 乔绅,周文哲,谭庆彪,等.镍基高温合金CM247LC增材制造研究进展[J].精密成形工程,2022,14(8):93-103.QIAO Shen,ZHOU Wen-zhe,TAN Qing-biao,et al.Research progress of additive manufacturing of CM247LC nickel-based superalloy[J].Journal of Netshape Forming Engineering,2022,14(8):93-103.
[13] 胡捷.激光功率对选区激光熔化IN738LC合金致密度的影响[J].材料导报,2022,36(S2):426-429.HU Jie.Influence of laser power on the density of IN 738LC Ni-based superalloy fabricated by selective laser melting[J].Materials Reports,2022,36(S2):426-429.
[14] Loez-Galilea I,Ruttert B,He J,et al.Additive manufacturing of CMSX-4 Ni-base superalloy by selective laser melting:Influence of processing parameters and heat treatment[J].Additive Manufacturing,2019,30:100874.
[15] 陈娇,罗桦,贺戬,等.航天用镍基高温合金及其激光增材制造研究现状[J].精密成形工程,2023,15(1):156-169.CHEN Jiao,LUO Hua,HE Jian,et al.Research status of nickel-based superalloy for aerospace field and its laser additive manufacturing technology[J].Journal of Netshape Forming Engineering,2023,15(1):156-169.
[16] 杨万鹏,刘国权,吴凯,等.亚固溶热处理对镍基粉末高温合金双重晶粒组织的影响[J].材料热处理学报,2014,35(3):85-90.YANG Wan-peng,LIU Guo-quan,WU Kai,et al.Influence of sub-solvus heat treatment on dual grain microstructure in a nickel-based powder metallurgy superalloy[J].Transactions of Materials and Heat Treatment,2014,35(3):85-90.
[17] Sun S,Teng Q,Xie Y,et al.Two-step heat treatment for laser powder bed fusion of a nickel-based superalloy with simultaneously enhanced tensile strength and ductility[J].Additive Manufacturing,2021,46(1):102168.
[18] Ghoussoub J N,Klup■ W J B,et al.A new class of alumina-forming superalloy for 3D printing[J].Additive Manufacturing,2022,52:102608.
[19] Messé O,Muňoz-Moreno R,Illston T,et al.Metastable carbides and their impact on recrystallisation in IN738LC processed by selective laser melting[J].Additive Manufacturing,2018,22:394-404.
[20] Wan H Y,Zhou Z J,Li C P,et al.Effect of scanning strategy on grain structure and crystallographic texture of Inconel 718 processed by selective laser melting[J].Journal of Materials Science and Technology,2018,34(10):1799-1804.
[21] Lee Y S,Nordin M,Babu S S,et al.Influence of fluid convection on weld pool formation in laser cladding[J].Welding Journal,2014,93(8):292-300.
[22] Liu L,Ding Q,Zhong Y,et al.Dislocation network in additive manufactured steel breaks strength-ductility trade-off[J].Materials Today,2018,21(4):354-361.
[23] Lin S,Chen K,He W,et al.Custom-designed heat treatment simultaneously resolves multiple challenges facing 3D-printed single-crystal superalloys[J].Materials & Design,2022,222:111075.
[24] Calcagnotto M,Ponge D,Demir E,et al.Orientation gradients and geometrically necessary dislocations in ultrafine grained dual-phase steels studied by 2D and 3D EBSD[J].Materials Science and Engineering A,2010,527(10/11):2738-2746.
[25] 丁雨田,王浩,许佳玉,等.去应力退火SLM成形Inconel 738合金组织和性能演变[J].稀有金属材料与工程,2020,49(12):4311-4320.DING Yu-tian,WANG Hao,XU Jia-yu,et al.Evolution of microstructure and properties of SLM formed Inconel 738 alloy during stress relief annealing[J].Rare Metal Materials and Engineering,2020,49(12):4311-4320.
基本信息:
DOI:10.13289/j.issn.1009-6264.2024-0297
中图分类号:TG156.94;TG132.3;TG665
引用信息:
[1]梁爽,刘智鑫,周叔恒等.亚固溶处理对一种SLM高温合金微观组织的影响[J].材料热处理学报,2025,46(04):74-80.DOI:10.13289/j.issn.1009-6264.2024-0297.
基金信息:
辽宁省2022年度“兴辽英才计划”战略科技人才项目(XLYC2203187); 辽宁省自然科学基金(2021-YKLH-04); “营口英才计划”青年拔尖人才项目(2021-YLYC)