40 | 0 | 0 |
下载次数 | 被引频次 | 阅读次数 |
采用非自耗钨极真空电弧熔炼炉制备了NiAl-30Cr-5Mo共晶高熵合金,研究了不同温度(600、700、800、900和1000℃)热处理对合金微观组织与力学性能的影响。结果表明:合金在铸态及热处理态的物相均为B2+BCC双相结构;随着热处理温度的升高,合金共晶组织显著粗化,屈服强度和硬度先增大后减小,断裂应变呈现出升高-降低-升高的趋势;总的来说,经600℃热处理后,合金的微观组织属于典型的层状共晶结构,表现出优异的综合力学性能,其屈服强度、断裂强度、断裂应变和维氏硬度分别为1137.1 MPa、1778.3 MPa、18.8%和514.2 HV30;当热处理温度大于700℃时,终端粗化机制和粗化长大机制共同作用导致合金的层状共晶组织退化。
Abstract:NiAl-30Cr-5Mo eutectic high-entropy alloy was prepared using a non consumable tungsten electrode vacuum arc melting furnace, and the effect of heat treatment at different temperatures(600 ℃, 700 ℃, 800 ℃, 900 ℃ and 1000 ℃) on microstructure and mechanical properties of the alloy was studied. The results show that the phases of the alloy in both as-cast and heat-treated states are B2+BCC dual-phase structures. With the increase of heat treatment temperature, the eutectic structure of the alloy significantly coarsens, the yield strength and hardness first increase and then decrease, and the fracture strain shows a trend of first increasing, then decreasing, and then increasing again. Overall, after heat treatment at 600 ℃, the microstructure of the alloy belongs to a typical lamellar eutectic structure, exhibiting excellent comprehensive mechanical properties, its yield strength, fracture strength, fracture strain, and Vickers hardness are 1137.1 MPa, 1778.3 MPa, 18.8% and 514.2 HV30, respectively. When the heat treatment temperature exceeds 700 ℃, the combined effect of terminal coarsening mechanism and coarsening growth mechanism leads to the degradation of the lamellar eutectic structure of the alloy.
[1] Yeh J W,Chen S K,Lin S J,et al.Nanostructured high-entropy alloys with multiple principal elements:Novel alloy design concepts and outcomes[J].Advanced Engineering Materials,2004,6(5):299-303.
[2] Cantor B,Chang I T H,Knight P,et al.Microstructural development in equiatomic multicomponent alloys[J].Materials Science and Engineering A,2004,375-377:213-218.
[3] Jin X,Zhou Y,Zhang L,et al.A novel Fe20Co20Ni41Al19 eutectic high entropy alloy with excellent tensile properties[J].Materials Letters,2018,216:144-146.
[4] Ye X C,Cheng Z H,Liu C,et al.The microstructure and properties of Fe55Cr15Ni(30-x)Nbx eutectic high-entropy alloys[J].Materials Science and Engineering A,2022,814:143026.
[5] 叶喜葱,吴鑫,王童,等.CrFeNi2Bx高熵合金的微观组织及力学性能[J].材料热处理学报,2022,43(9):68-77.YE Xi-cong,WU Xin,WANG Tong,et al.Microstructure and mechanical properties of CrFeNi2Bx high-entropy alloy[J].Transactions of Materials and Heat Treatment,2022,43(9):68-77.
[6] Ye X C,Xiong J Y,Wu X,et al.A new infinite solid solution strategy to design eutectic high entropy alloys with B2 and BCC structure[J].Scripta Materialia,2021,199:113886.
[7] Ye X C,Diao Z H,Lei H F,et al.Multi-phase FCC-based composite eutectic high entropy alloy with multi-scale microstructure[J].Materials Science and Engineering A,2024,889:145815.
[8] Ye X C,Diao Z H,Kang H J,et al.A new strategy for the design of triple-phase eutectic high-entropy alloys based on infinite solid solution and pseudo-ternary method[J].Nano Letters,2024,24(20):6117-6123.
[9] Wu Y D,Cai Y H,Wang T,et al.A refractory Hf25Nb25Ti25Zr25 high-entropy alloy with excellent structural stability and tensile properties[J].Materials Letters,2014,130:277-280.
[10] Lee C,Chou Y,Kim G,et al.Lattice-distortion-enhanced yield strength in a refractory high-entropy alloy[J].Advanced Materials,2020,32:2004029.
[11] Shang X L,Wang Z J,He F,et al.The intrinsic mechanism of corrosion resistance for FCC high entropy alloys[J].Science China Technological Sciences,2018,61:189-196.
[12] Li Y H,Wang S W,Wang X W,et al.New FeNiCrMo(P,C,B) high-entropy bulk metallic glasses with unusual thermal stability and corrosion resistance[J].Journal of Materials Science & Technology,2020,43:32-39.
[13] Hsu C Y,Sheu T S,Yeh J W,et al.Effect of iron content on wear behavior of AlCoCrFexMo0.5Ni high-entropy alloys[J].Wear,2010,268(5):653-659.
[14] 陈镜安,余明赟,宋庭浚,等.热处理对Al0.5CoCrFeNiTi0.15高熵合金微观组织和性能的影响[J].材料热处理学报,2024,45 (11):111-120.CHEN Jing-an,YU Ming-yun,SONG Ting-jun,et al.Effect of heat treatment on microstructure and properties of Al0.5CoCrFeNiTi0.15 high-entropy alloy[J].Transactions of Materials and Heat Treatment,2024,45 (11):111-120.
[15] Zhou J,Guo J T.Effect of Ag alloying on microstructure,mechanical and electrical properties of NiAl intermetallic compound[J].Materials Science and Engineering A,2003,339(1/2):166-174.
[16] Noebe R D,Bowman R R,Nathal M V.Physical and mechanical properties of the B2 compound NiAl[J].International Materials Reviews,1993,38(4):193-232.
[17] Kellner M,H?tzer J,Schoof E,et al.Phase-field study of eutectic colony formation in NiAl-34Cr[J].Acta Materialia,2020,182:267-277.
[18] Milenkovic S,Caram R.Growth morphology of the NiAl-V in situ composites[J].Journal of Materials Processing Technology,2003,143-144(1):629-635.
[19] Zhang J F,Shen J S,Zhan S,Microstructure and room temperature fracture toughness of directionally solidified NiAl-Mo eutectic in situ composites[J].Intermetallics,2012,21(1):18-25.
[20] Shang Z,Shen J,Liu G,et al.Investigations on the solidification microstructures and room temperature compression properties of Nb-doped NiAl-32Cr-6Mo hypereutectic alloy[J].Materials Science and Engineering A,2018,723:89-96.
[21] Shang Z,Zhang Q W,Shen J,et al.Effects of V addition on the solidification microstructures and room temperature compression properties of NiAl-Cr(Mo) hypereutectic alloy[J].Vacuum,2020,179:109507.
[22] 郭岚岚.NiAl-28Cr-6Mo共晶合金组织热稳定性研究[D].西安:西安理工大学,2017.GUO Lan-lan.The thermal stability of NiAl-28Cr-6Mo eutectic alloy[D].Xi’an:Xi’an University of Technology,2017.
[23] Lu Y P,Dong Y,Guo S,et al.A promising new class of high-temperature alloys:Eutectic high-entropy alloys[J].Scientific Reports,2014,4:6200.
[24] 冯正中,顾晨曦,王欣可,等.退火处理对CoFeNiVTi高熵合金组织和性能的影响[J].材料热处理学报,2023,44(10):130-136.FENG Zheng-zhong,GU Chen-xi,WANG Xin-ke,et al.Effect of annealing treatment on microstructure and properties of CoFeNiVTi high entropy alloy[J].Transactions of Materials and Heat Treatment,2023,44(10):130-136.
[25] Akira T and Akihisa I.Classification of Bulk metallic glasses by atomic size difference,heat of mixing and period of constituent elements and its application to characterization of the main alloying element[J].Materials Transactions,2005,46(12):2817 28-29.
[26] Li L,Fang Q,Li J,et al.Lattice-distortion dependent yield strength in high entropy alloys[J].Materials Science and Engineering A,2020,784:139323.
[27] Zhou J,Guo J T.Effect of Ag alloying on microstructure,mechanical and electrical properties of NiAl intermetallic compound[J].Materials Science and Engineering A,2003,339(1/2):166-174.
[28] Liu W H,Wu Y,He J Y,et al.Grain growth and the Hall-Petch relationship in a high-entropy FeCrNiCoMn alloy[J].Scripta Materialia,2013,68(7):526-529.
[29] Jiang L,Lu Y P,Wu Wei,et al.Microstructure and mechanical properties of a CoFeNi2V0.5Nb0.75 eutectic high entropy alloy in as-cast and heat-treated conditions[J].Journal of Materials Science & Technology,2016,32(3):245-250.
[30] Sharma G,Ramanujan R V,Tiwari G P.Instability mechanisms in lamellar microstructures[J].Acta Materialia,2000,48(4):875-889.
[31] Dantzig J A,Rappaz M.Solidification[M].Switzerland:EPFL Press,2009:349-349.
[32] Kampe J C M,Courtney T H,Leng Y.Shape instabilities of plate-like structures—I.Experimental observations in heavily cold worked in situ composites[J].Acta Metallurgica,1989,37(7):1735-1745.
[33] Lin L Y,Courtney T H.Direct observations of lamellar fault migration in the Pb-Sn eutectic[J].Metallurgical Transactions,1974,5(2):513-514.
基本信息:
DOI:10.13289/j.issn.1009-6264.2025-0126
中图分类号:TG139;TG156
引用信息:
[1]吴鑫,叶喜葱,陈志洋等.热处理温度对NiAl-30Cr-5Mo共晶高熵合金组织和力学性能的影响[J].材料热处理学报,2025,46(07):115-123.DOI:10.13289/j.issn.1009-6264.2025-0126.
基金信息: