12 | 0 | 7 |
下载次数 | 被引频次 | 阅读次数 |
管线钢环焊缝作为管道运输的薄弱点,在富氢环境下服役极有可能发生氢脆从而影响运输安全。本文综述了高钢级管线钢焊接材料的发展现状,分别讨论了管线钢焊材的特点、管线钢环焊缝的强韧化机制和夹杂物对焊缝抗氢性能的影响机理。此外,还探讨了含稀土元素焊材的研究现状及其改善焊缝抗氢性能的作用机理,为新型环焊焊材的开发提供理论支撑。最后展望了防止管线钢环焊缝发生氢脆的研究方向,以期保障工程建设安全。
Abstract:As a weak point in pipeline transportation, pipeline steel girth welds are highly likely to experience hydrogen embrittlement during service in hydrogen-rich environments, which can affect transportation safety. This article summarizes the development status of welding materials for high-grade pipeline steel, and discusses the characteristics of pipeline steel welding materials, the strengthening mechanism of pipeline steel girth welds, and the influence mechanism of inclusions on the hydrogen resistance of welds. In addition, the research status of rare earth element containing welding materials and the mechanism of improving the hydrogen resistance of welds are also discussed, providing theoretical support for the development of new girth welding materials. Finally, the research direction for preventing hydrogen embrittlement in pipeline steel girth welds is prospected to ensure the safety of engineering construction.
[1]王春明,鲁强,吴杏芳.管线钢的合金设计[J].鞍钢技术,2004(6):22-28.WANG Chun-ming,LU Qiang,WU Xing-fang. Alloy design of pipeline steel[J]. Angang Technology,2004(6):22-28.
[2]张斌,钱成文,王玉梅,等.国内外高钢级管线钢的发展及应用[J].石油工程建设,2012,38(1):1-4.ZHANG Bin,QIAN Cheng-wen,WANG Yu-mei,et al. Development and application of high-grade pipeline steel at home and abroad[J]. Petroleum Engineering Construction,2012,38(1):1-4.
[3]张圣柱,程玉峰,冯晓东,等. X80管线钢性能特征及技术挑战[J].油气储运,2019,38(5):481-495.ZHANG Sheng-zhu,CHENG Yu-feng,FENG Xiao-dong,et al. Performance characteristics and technical challenges of X80 pipeline steel[J]. Oil&Gas Storage and Transportation,2019,38(5):481-495.
[4]Thornton P A. The influence of nonmetallic inclusions on the mechanical properties of steel:A review[J]. Journal of Materials Science,1971(6):347-356.
[5]邢云颖. X80管线钢在强阴极干扰条件下的氢脆研究[D].北京:北京科技大学,2022.XING Yun-ying. Hydrogen embrittlement of X80 pipeline steel under strong cathodic interference[D]. Beijing:University of Science and Technology Beijing,2022.
[6]胡建春,陈龙,廖井洲,等.西气东输二线工程X80钢自动焊焊接工艺[J].压力容器,2012,29(4):76-80.HU Jian-chun,CHEN Long,LIAO Jing-zhou,et al. Automatic welding technology of X80 pipeline steel for west to east gas pipeline II project[J]. Pressure Vessel Technology,2012,29(4):76-80.
[7]Baroush A,Vehoff H. Recent developments in the study of hydrogen embrittlement:Hydrogen effect on dislocation nucleation[J].Acta Materialia,2010,58(16):5274-5285.
[8]Dwivedi S K,Vishwakarma M. Hydrogen embrittlement in different materials:A review[J]. International Journal of Hydrogen Energy,2018,43(46):21603-21616.
[9]周华生,曹燕,章小峰,等.多尺度实验测试评价高强钢氢脆的研究进展[J].材料导报,2024,38(10):213-223.ZHOU Hua-sheng,CAO Yan,ZHANG Xiao-feng,et al. Research progress of studying hydrogen embrittlement in high-strength steel by multiscale experiments and evaluation methods[J]. Materials Reports,2024,38(10):213-223.
[10]陈振峰,唐东升,卢明,等.药芯焊丝和纤维素焊条在山岭地区天然气管道焊接中的应用[J].金属加工(热加工),2017(S1):78-81.CHEN Zhen-feng,TANG Dong-sheng,LU Ming,et al. Application of flux cored wire and cellulose electrode in natural gas pipeline welding in mountainous areas[J]. MW Metal Forming,2017(S1):78-81.
[11]张牧阳.长输管道焊接技术的应用思考[J].工程技术研究,2017(5):119-120.ZHANG Mu-yang. Thoughts on the application of long-distance pipeline welding technology[J]. Engineering and Technological Researc,2017(5):119-120.
[12]何少卿,高英平.低氢型药皮焊条[J].机械制造文摘:焊接分册,2012(6):20-23.HE Shao-qing,GAO Ying-ping. Low hydrogen type coated electrode[J]. Welding Digest of Machinery Manufacturing,2012(6):20-23.
[13]Zeng H L,Wang C J,Yang X M,et al. Automatic welding technologies for long-distance pipelines by use of all-position selfshielded flux cored wires[J]. Natural Gas Industry B,2014,1(1):113-118.
[14]Ai X,Liu Z,Wu D. Study on improvement of welding technology and toughening mechanism of Zr on weld metal of Q960 steel[J].Materials,2020,13(4):892.
[15]Liu D,Wei P,Long W,et al. Narrow gap space contributes to chemical metallurgy of self-shielded arc welding[J]. China Welding(English Edition),2021,30(3):12-19.
[16]倪雪辉.金属粉芯自保护堆焊用药芯焊丝的研制[D].湘潭:湘潭大学,2009.NI Xue-hui. The development of metal cored self-shielded flux-cored wire for submerged overlaying[D]. Xiangtan:Xiangtan University,2009.
[17]戴联双,利成宁,冯庆善,等.一种低成本高断裂韧性的实心焊丝及其制备方法和应用:中国,CN202311794018. 9[P]. 2024-03-29.
[18]Beidokhti B,Koukabi A H,Dolati A. Effect of titanium addition on the microstructure and inclusion formation in submerged arc welded HSLA pipeline steel[J]. Journal of Materials Processing Technology,2009,209(8):4027-4035.
[19]Babu S S. The mechanism of acicular ferrite in weld deposits[J]. Current Opinion in Solid State and Materials Science,2004,8(3/4):267-278.
[20]Suzuki S,Tanino M,Waseda Y. Phosphorus and boron segregation at prior austenite grain boundaries in low-alloyed steel[J]. ISIJ International,2002,42(6):676-678.
[21]李皓. X80管线钢自保护药芯焊丝半自动焊焊缝金属组织性能研究[D].北京:中国石油大学,2016.LI Hao. Study on microstructure and properties of semi automatic weld metal of self shielded flux cored wire for X80 pipeline steel[D]. Beijing:China University of Petroleum,2016.
[22]蒋庆磊. 800 MPa高强钢GMAW接头组织性能及精细结构研究[D].济南:山东大学,2011.JIANG Qing-lei. Investigation of microstructure,properties and fine structure of 800 MPa high strength steel joints by GMAW[D].Jinan:Shandong University,2011.
[23]Wang C,Di X J,Dai L S,et al. Correlation between heterogeneous micromechanical properties and fracture toughness in X80 girth weld[J]. Materials Today Communications,2024,41:110589.
[24]Wang C,Di X J,Dai L S,et al. Effect of grain boundary ferrite morphologies on impact toughness of X80 girth weld[J]. Materials Letters,2024,377:137412.
[25]Wang C,Li C N,Dai L S,et al. Simultaneously enhancing strength and fracture toughness via tailoring the microstructure in X80girth weld metal[J]. Journal of Materials Research and Technology,2024,29:3096-3107.
[26]Wang C,Di X J,Dai L S,et al. Effect of strain aging on mechanical properties and engineering critical assessment of X80 girth weld metal[J]. International Journal of Pressure Vessels and Piping,2023,206:105071.
[27]Johnson W H. On some remarkable changes produced in iron and steel by the action of hydrogen and acids[J]. Nature,1875,11(281):393.
[28]罗杰,郭正洪,戎咏华.先进高强度钢氢脆的研究进展[J].机械工程材料,2015,39(8):1-9.LUO Jie,GUO Zheng-hong,RONG Yong-hua. Research progress on hydrogen embrittlement in advanced high strength steels[J].Materials for Mechanical Engineering,2015,39(8):1-9.
[29]朱永强,宋维,李雨霞,等.输氢管线钢防止氢脆研究进展[J].表面技术,2022,51(11):126-137.ZHU Yong-qiang, SONG Wei, LI Yu-xia, et al. Research progress on protection against hydrogen embrittlement of hydrogentransport pipeline steels[J]. Surface Technology,2022,51(11):126-137.
[30]Xie D G,Wan L,Shan Z W. Hydrogen Enhanced cracking via dynamic formation of grain boundary inside aluminium crystal[J].Corrosion Science,2021,183:109307.
[31]杜则裕.焊接冶金学:基本原理[M].北京:机械工业出版社,2018:37.
[32]姜圆博.深海管道焊接接头的循环塑性变形行为及氢脆机理研究[D].天津:天津大学,2022.JIANG Yuan-bo. Study on the cyclic plastic deformation behavior and hydrogen embrittlement mechanism of deep-sea pipeline welded joint[D]. Tianjin:Tianjin University,2022.
[33]Maroef I,Olson D L,Eberhart M,et al. Hydrogen trapping in ferritic steel weld metal[J]. International Materials Reviews,2002,47(4):191-223.
[34]Lino M. The extension of hydrogen blister-crack array in linepipe steels[J]. Metallurgical Transaction A,1978,9:1581-1590.
[35]Li C M. Physical chemistry of some microstructural phenomena[J]. Metallurgical Transaction A,1978,9:1353-1380.
[36]Xue H B,Cheng Y F. Characterization of inclusions of X80 pipeline steel and its correlation with hydrogen-induced cracking[J].Corrosion Science,2011,53(4):1201-1208.
[37]Pressouyre G M,Bernstein I M. An example of the effect of hydrogen trapping on hydrogen embrittlement[J]. Metallurgical Transaction A,1981,12:835-844.
[38]纪东莲.稀土在钢铁焊接材料中的应用[J].稀土,1999(1):73-75.JI Dong-lian. Application of rare earth in steel welding materials[J]. Chinese Rare Earths,1999(1):73-75.
[39]Papastergiou K D,Macpherson D E,Fisher F A. 1 k W phase-shifted full bridge converter incorporating contact-less transfer of energy[C]//IEEE 36th Power Electronic Specialists Conference. Recife,2005.
[40]张文钺,张智,陈邦固,等.钇在钛钙型焊条焊缝中增韧作用的研究[J].中国稀土学报,1995(3):255-258.ZHANG Wen-yue,ZHANG Zhi,CHEN Bang-gu,et al. Study on toughening effect of yttrium in Ti-calcium electrode weld[J].Journal of the Chinese Society of Rare Earths,1995(3):255-258.
[41]余圣甫,邓宇,黄安国,等.稀土Ce在大热输入焊缝金属中的作用[J].中国科技论文,2012,7(8):612-615.YU Sheng-fu,DENG Yu,HUANG An-guo,et al. Role of rare earth Ce in large heat input weld metals[J]. China Science Paper,2012,7(8):612-615.
[42]利成宁,王敬松,戴联双,等.二氧化铈对熔敷金属氢致塑性损失的影响及其机理研究[J].天津大学学报(自然科学与工程技术版),2024,57(10):1062-1069.LI Cheng-ning,WANG Jing-song,DAI Lian-shuang,et al. Effect of cerium dioxide on plastic loss caused by hydrogen in deposited metal and its mechanism[J]. Journal of Tianjin University(Science and Technology),2024,57(10):1062-1069.
基本信息:
DOI:10.13289/j.issn.1009-6264.2024-0486
中图分类号:TG42
引用信息:
[1]韩佳伟,刘海春,戴联双等.高钢级管道环焊焊材的研究现状及发展趋势[J].材料热处理学报,2025,46(09):1-9.DOI:10.13289/j.issn.1009-6264.2024-0486.
基金信息:
国家管网集团重大科技专项项目(WZXGL202105)