nav emailalert searchbtn searchbox tablepage yinyongbenwen piczone journalimg journalInfo searchdiv qikanlogo popupnotification paper paperNew
2025, 09, v.46 60-67
高低温循环热处理对固溶态Mg-10Gd-6Y-1.5Zn-0.5Zr镁合金力学性能与微观组织的影响
基金项目(Foundation): 重庆市自然科学基金面上项目(CSTB2022NSCQ-MSX0252); 重庆理工大学科研创新团队培育计划项目(2023TDZ010);重庆理工大学校级研究生创新项目(gzlcx20232013);重庆理工大学大学生创新创业训练计划(26)
邮箱(Email): huli@cqut.edu.cn;
DOI: 10.13289/j.issn.1009-6264.2024-0573
摘要:

深空环境中复杂的高低温交变温度场会对稀土镁合金构件的力学性能和服役寿命产生显著影响,然而相关研究还少见报道。鉴于此,对固溶态Mg-10Gd-6Y-1.5Zn-0.5Zr镁合金进行了不同次数的高低温循环热处理(-196℃×45 min→196℃×45 min),采用X射线衍射仪(XRD)、场发射扫描电镜(SEM)和室温单轴压缩实验等研究了高低温循环热处理对其力学性能和微观组织演化的影响。结果表明:在经历0次(0C)、1次(1C)、6次(6C)、20次(20C)高低温循环热处理后,试样的LPSO相体积分数分别为10.00%、10.45%、9.86%和10.71%,说明循环次数对于LPSO相体积分数影响可忽略不计;循环次数会影响合金中基面峰、柱面峰和锥面峰的峰强度,这说明合金在高低温循环热处理过程中会发生部分晶粒区域的取向转动;0C、1C、6C和20C样品的屈服强度分别为322、249、263和316 MPa,极限抗压强度分别为552、620、670和645 MPa,断裂伸长率分别为8.02%、11.21%、10.76%和8.11%;上述力学性能的变化,与不同循环次数高低温循环热处理中,Mg-10Gd-6Y-1.5Zn-0.5Zr镁合金的整体位错密度变化、晶粒晶界附近以及LPSO相和基体界面位置处几何必要位错(Geometrically necessary dislocation, GND)变化密切相关。

Abstract:

The complex and alternating high-low temperature fields in deep space environment can have a significant effect on the mechanical properties and service life of rare earth magnesium alloy components, but there are few reports on related research. In view of this, the solution treated Mg-10Gd-6Y-1. 5Zn-0. 5Zr magnesium alloy was subjected to different cycles of high and low temperature cycle heat treatment(-196 ℃ ×45 min → 196 ℃ ×45 min). The effect of high and low temperature cycle heat treatment on its mechanical properties and microstructure evolution was studied using X-ray diffraction(XRD), field emission scanning electron microscopy(SEM),and room temperature uniaxial compression experiments. The results show that after undergoing 0 cycles(0C), 1 cycle(1C), 6 cycles(6C), and 20 cycles(20C) of high and low temperature cycle heat treatment, the volume fractions of long period stacking ordered(LPSO) phase in the samples are 10. 00%, 10. 45%, 9. 86%, and 10. 71%, respectively, indicating that the effect of cycle times on the volume fraction of LPSO phase is negligible. The cycle times will affect the peak intensity of the basal peak, prismatic peak and pyramidal peak of the alloy, indicating that the alloy undergoes orientation rotation in specific grain regions during high and low temperature cyclic heat treatment. The yield strength of the 0C, 1C, 6C, and 20C samples is 322 MPa, 249 MPa, 263 MPa, and 316 MPa, respectively;the ultimate compressive strength is 552 MPa, 620 MPa, 670 MPa, and 645 MPa, respectively; and the fracture elongation is 8. 02%,11. 21%, 10. 76%, and 8. 11%, respectively. The aforementioned changes in the mechanical properties are closely related to variations in the overall dislocation density of the Mg-10Gd-6Y-1. 5Zn-0. 5Zr magnesium alloy, as well as the evolution of the geometrically necessary dislocations(GNDs) near grain boundaries and at the LPSO phase/matrix interface during different cycles of high and low temperature cyclic heat treatment.

参考文献

[1] Zhang R,Wang J,Huang S,et al. Substitution of Ni for Zn on microstructure and mechanical properties of Mg-Gd-Y-Zn-Mn alloy[J]. Journal of Magnesium and Alloys,2017,5(3):355-361.

[2] Liu H,Bai J,Yan K,et al. Comparative studies on evolution behaviors of 14H LPSO precipitates in as-cast and as-extruded Mg-YZn alloys during annealing at 773 K[J]. Materials&Design,2016,93:9-18.

[3] Liao H,Kim J,Lv J,et al. Microstructure and mechanical properties with various pre-treatment and Zn content in Mg-Gd-Y-Zn alloys[J]. Journal of Alloys and Compounds,2020,831:154873.

[4]王策,马爱斌,刘欢,等. LPSO相增强镁稀土合金耐热性能研究进展[J].材料导报,2019,33(19):3298-3305.WANG Ce,MA Ai-bin,LIU Huan,et al. Research progress on the heat resistance of LPSO phase reinforced magnesium rare earth alloys[J]. Materials Reports,2019,33(19):3298-3305.

[5] Yang Y,Xiong X M,Chen J,et al. Research advances of magnesium and magnesium alloys worldwide in 2022[J]. Journal of Magnesium and Alloys,2023,11(8):2611-2654.

[6] Zhang X,Wu G,Liu W,et al. Low temperature mechanical properties of as-extruded Mg-10Gd-3Y-0. 5Zr magnesium alloy[J].Transactions of Nonferrous Metals Society of China,2012,22(12):2883-2890.

[7] Wu Y,Deng B,Li X,et al. In-situ EBSD study on twinning activity caused by deep cryogenic treatment(DCT)for an as-cast AZ31Mg alloy[J]. Journal of Materials Research and Technology,2024,30:3840-3850.

[8] Zhang Z,Yuan L,Ma J,et al. Role of and dislocations on the room-temperature grain boundary migration in a deformed Mg alloy[J]. International Journal of Plasticity,2024,172:103862.

[9] Hu L,Lang M, Shi L, et al. Study on hot deformation behavior of homogenized Mg-8. 5Gd-4. 5Y-0. 8Zn-0. 4Zr alloy using a combination of strain-compensated Arrhenius constitutive model and finite element simulation method[J]. Journal of Magnesium and Alloys,2023,11(3):1016-1028.

[10] Shao B,Wu S,Shan D,et al. The effect of thermal cycling process between high and low temperatures on the microstructure and properties of Mg-10Li-3Al-3Zn-0. 25 Si alloy[J]. Materials Letters,2019,254:167-170.

[11] Zhou B,Liu W,Wu G,et al. Microstructure and mechanical properties of sand-cast Mg-6Gd-3Y-0. 5 Zr alloy subject to thermal cycling treatment[J]. Journal of Materials Science&Technology,2020,43:208-219.

[12]唐昌平,张新明,邓运来,等.高低温循环对EW94镁合金组织与力学性能的影响[J].中国有色金属学报,2011,21(3):505-512.TANG Chang-ping, ZHANG Xin-ming, DENG Yun-lai, et al. Effects of high-low temperature cycle on microstructures and mechanical properties of EW94 magnesium alloy[J]. The Chinese Journal of Nonferrous Metals,2011,21(3):505-512.

[13] Dragomir I C,Ungár T. Contrast factors of dislocations in the hexagonal crystal system[J]. Journal of Applied Crystallography,2002,35(5):556-564.

[14] Jono Y,Yamasaki M,Kawamura Y. Effect of LPSO phase-stimulated texture evolution on creep resistance of extruded Mg-Zn-Gd alloys[J]. Materials Transactions,2013,54(5):703-712.

[15]罗宇伦,杨鸿,董志华,等. Mg-TM-RE系镁合金中LPSO相的研究进展[J].中国有色金属学报,2024,34(5):1429-1452.LUO Yu-lun,YANG Hong,DONG Zhi-hua,et al. Research progress of LPSO phase in Mg-TM-RE alloy[J]. The Chinese Journal of Nonferrous Metals,2024,34(5):1429-1452.

[16]宋登辉,周涛,蒋伟,等.小应变条件下终轧速度对AZ31镁合金板材组织与性能的影响[J].热加工工艺,2016,45(23):118-121.SONG Deng-hui,ZHOU Tao,JIANG Wei,et al. Effect of final rolling speed on microstructure and performance of AZ31 magnesium alloy sheet under small strain condition[J]. Hot Working Technology,2016,45(23):118-121.

[17] Chen Y,Hu L,Shi L,et al. Effect of texture types on microstructure evolution and mechanical properties of AZ31 magnesium alloy undergoing uniaxial tension deformation at room temperature[J]. Materials Science and Engineering A,2020,769:138497.

[18] Jiang L,Jonas J J,Mishra R K,et al. Twinning and texture development in two Mg alloys subjected to loading along three different strain paths[J]. Acta Materialia,2007,55(11):3899-3910.

[19] Che B,Lu L,Zhang J,et al. Effects of cryogenic treatment on microstructure and mechanical properties of AZ31 magnesium alloy rolled at different paths[J]. Materials Science and Engineering A,2022,832:142475.

[20] Zhang M,Wang W,Zhang J,et al. The recovery behavior of AZ31B magnesium alloy stimulated by electropulsing treatment and heat treatment[J]. Journal of Materials Engineering and Performance,2022,31(10):8346-8354.

[21]罗旋,韩芳,黄天林,等.层状异构Mg-3Gd合金的微观组织和力学性能[J].金属学报,2022,58(11):1489-1496.LUO Xuan,HAN Fang,HUANG Tian-lin,et al. Microstructure and Mechanical Properties of Layered Heterostructured Mg-3Gd Alloy[J]. Acta Metallurgica Sinica,2022,58(11):1489-1496.

[22]张学锋,吴国华,丁文江.高低温处理条件下AZ31镁合金的力学性能与微观组织[J].中国有色金属学报,2011,21(12):2979-2986.ZHANG Xue-feng,WU Guo-hua,DING Wen-jiang. Mechanical properties and microstructures of AZ31 magnesium alloy after high and low temperature treatment[J]. The Chinese Journal of Nonferrous Metals,2011,21(12):2979-2986.

[23] Liu H, Huang H, Yang X, et al. Microstructure and mechanical property of a high-strength Mg-10Gd-6Y-1. 5Zn-0. 5Zr alloy prepared by multi-pass equal channel angular pressing[J]. Journal of Magnesium and Alloys,2017,5(2):231-237.

[24] Gao Y,Ding Y,Chen J,et al. Effect of twin boundaries on the microstructure and mechanical properties of Inconel 625 alloy[J].Materials Science and Engineering A,2019,767:138361.

[25] Liao H,Kim J,Lee T,et al. Effect of heat treatment on LPSO morphology and mechanical properties of Mg-Zn-Y-Gd alloys[J].Journal of Magnesium and Alloys,2020,8(4):1120-1127.

[26] Wang W,Chen W, Jung J, et al. Asymmetry evolutions in microstructure and strain hardening behavior between tension and compression for AZ31 magnesium alloy[J]. Materials Science and Engineering A,2022,844:143168.

基本信息:

DOI:10.13289/j.issn.1009-6264.2024-0573

中图分类号:TG146.22;TG156

引用信息:

[1]苗天虎,龚海,王力等.高低温循环热处理对固溶态Mg-10Gd-6Y-1.5Zn-0.5Zr镁合金力学性能与微观组织的影响[J].材料热处理学报,2025,46(09):60-67.DOI:10.13289/j.issn.1009-6264.2024-0573.

基金信息:

重庆市自然科学基金面上项目(CSTB2022NSCQ-MSX0252); 重庆理工大学科研创新团队培育计划项目(2023TDZ010);重庆理工大学校级研究生创新项目(gzlcx20232013);重庆理工大学大学生创新创业训练计划(26)

检 索 高级检索

引用

GB/T 7714-2015 格式引文
MLA格式引文
APA格式引文