针状铁素体X65管线钢中MA岛结构表征及其对疲劳裂纹扩展的影响Characterization of MA islands structure in acicular ferrite X65 pipeline steel and its effect on fatigue crack propagation
金传伟,张继明,吴园园
摘要(Abstract):
利用聚焦离子束(FIB)刻蚀方法精确制备了针状铁素体X65管线钢的马奥岛(MA)薄膜样品,随后采用电子背散射衍射(EBSD)技术和透射电镜(TEM)对MA岛的亚结构进行了表征,并研究了MA岛在疲劳裂纹扩展中的作用。结果表明,针状铁素体X65管线钢中MA含量约为5.7%,MA岛主要弥散分布在晶界处,尺寸≤3μm。MA岛内部亚结构被马氏体和残留奥氏体分割为大小不等的块区,残留奥氏体与马氏体相互交错分布,一些区域马氏体与奥氏体存在共格关系。MA岛内部残留奥氏体与马氏体交错分布的特征对疲劳裂纹扩展具有显著的抑制作用,当疲劳裂纹扩展路径遇到MA岛时,主裂纹扩展方向发生偏折,并绕过MA岛,而支裂纹则被MA岛所捕获,停止扩展。
关键词(KeyWords): 管线钢;MA岛;残留奥氏体;共格关系;疲劳裂纹扩展
基金项目(Foundation):
作者(Author): 金传伟,张继明,吴园园
DOI: 10.13289/j.issn.1009-6264.2022-0574
参考文献(References):
- [1] Zhang J M,Luo T X,Wang X Q,et al.Formation mechanism of nanoscale transformation twinning in ultra-low-carbon high-strength pipeline steels[J] Journal of Materials Science,2019,54:14950-14960.
- [2] Sung H K,Shin S Y,Cha W,et al.Effects of acicular ferrite on charpy impact properties in heat affected zones of oxide-containing API X80 linepipe steels[J].Materials Science and Engineering A,2011,528:3350-3357.
- [3] Shao Y,Liu C X,Yan Z S,et al.Formation mechanism and control methods of acicular ferrite in HSLA steels:A review[J].Journal of Materials Science & Technology,2018,34:737-744.
- [4] 褚峰,张继明,张亚运,等.中俄东线大壁厚X80 管线钢的连续冷却相变行为[J].热加工工艺,2020,49(20):146-148.CHU Feng,ZHANG Ji-ming,ZHANG Ya-yun,et al.Continuous cooling phase transformation behavior of Sino-Russian east line large wall thickness X80 pipeline steel[J].Hot Working Technology,2020,49(20):146-148.
- [5] 李鹤林,吉玲康.西气东输二线高强韧性焊管及保障管道安全运行的关键技术[J].世界钢铁,2009,1:56-64.LI He-lin,JI Ling-kang.High strength and toughness welded pipe of the second west to east gas pipeline and key technologies to ensure safe operation of the pipeline[J].World Steel & Iron,2009,1:56-64.
- [6] Smith Y E,Coldren A P,Cryderman R L.Toward Improved Ductility and Toughness[M].Tokyo:Climax Molybdenum Company Ltd,Tokyo,1972:119-142.
- [7] Mujahid S A,Bhadeshia H K D H.Coupled diffusional/displacive transformations:Effect of carbon concentration[J].Acta Metallurgica et Materialia,1993,41(3):967-973.
- [8] 冯耀荣,柴惠芬,郭生武,等.低碳超低碳微合金化管线钢显微组织的研究进展[J].材料导报,2006,16(6):9-12.FENG Yao-rong,CHAI Hui-fen,GUO Sheng-wu,et al.Progress in research on microstructure of low-carbon and ultralow-carbon microalloyed of pipeline steels[J].Materials Review,2006,16(6):9-12.
- [9] Zhang J M,Huo C Y,Ma Q R,et al.NbC-TiN co-precipitation behavior and mechanical properties of X90 pipeline steels by critical-temperature rolling process[J].International Journal of Pressure Vessels and Piping,2018,165:29-33.
- [10] Qi X N,Huan P C,Wang X N.Effect of root welding heat input on microstructure evolution and fracture mechanism in intercritically reheat-coarse grained heat-affected zone of X80 pipeline steel[J].Materials Today Communications,2022,31:103413.
- [11] Seishi T,Haruo N,Katsumi Y,et al.Effects of distribution and the formation Process of MA on deformation and toughness of high strength linepipe steel[J].ISIJ International,2013,53(2):317-322.
- [12] 马璇,王慧,刘刚伟,等.MA 形成过程和分布对高强度管线钢力学性能的影响[J].国外焊管,2016,39(5):64-68.MA Xuan,WANG Hui,LIU Gang-wei,et al.Effects of distribution and the formation process of MA on deformation and toughness of high strength pipeline steel[J].Foreign Welded Pipe,2016,39(5):64-68.
- [13] 张继明,喻春明.X100 管线钢中马奥岛精细结构表征及逆转变TEM原位分析[J].材料热处理学报,2021,42(1):140-146.ZHANG Ji-ming,YU Chun-ming.Fine structure characterization and TEM in situ analysis of reversed transformation of martensite-austenite islands in X100 pipeline steel[J].Transactions of Materials and Heat Treatment,2021,42(1):140-146.
- [14] 陈林,郭飞翔,王慧军,等.微观组织对U20Mn 贝氏体钢疲劳裂纹扩展行为的影响[J].材料热处理学报,2018,39(2):119-124.CHEN Lin,GUO Fei-xiang,WANG Hui-jun,et al.Effect of microstructure on fatigue crack propagation behavior of U20Mn bainitic steel[J].Transactions of Materials and Heat Treatment,2018,39(2):119-124.
- [15] 刘文娟,陈迎锋,路民旭.超载对X52管线钢疲劳裂纹扩展速率的影响[J].材料热处理学报,2008,29(4):123-126.LIU Wen-juan,CHEN Ying-feng,LU Min-xu.Effect of overload on fatigue crack growth rate for X52 pipeline steel[J].Transactions of Materials and Heat Treatment,2008,29(4):123-126.
- [16] 段德盛,王文先,闫志峰,等.18CrNiMo7-6 齿轮钢的疲劳裂纹扩展行为[J].材料热处理学报,2008,29(4):123-126.DUAN De-sheng,WANG Wen-xian,YAN Zhi-feng,et al.Fatigue crack propagation behavior of 18CrNiMo7-6 gear steel[J].Transactions of Materials and Heat Treatment,2008,29(4):123-126.
- [17] Zhang J M,Chi Q,Ji L K,et al.Microstructure and mechanical properties of twinning M/A islands in a X100 high strength pipeline steel[J].Materials Science Forum,2017,896:182-189.
- [18] Wang C M,Wu X F,Liu J,et al.Transmission electron microscopy of martensite/austenite islands in pipeline steel X70[J].Materials Science and Engineering A,2006,438-440:267-271.
- [19] Shanmugam S,Ramisetti N K,Misra R D K,et al.Microstructure and high strength-toughness combination of a new 700 MPa Nb-microalloyed pipeline steel[J].Materials Science and Engineering A,2008,478:26-37.
- [20] Zhong Y,Xiao F R,Zhang J W,et al.In situ TEM study of the effect of M/A films at grain boundaries on crack propagation in an ultra-fine acicular ferrite pipeline steel[J].Acta Materialia,2006,54:435-443.
- [21] 曾燕屏,朱鹏宇,仝珂.显微组织对X70 管线钢力学性能的影响[J].材料热处理学报,2015,36(3):45-49.ZENG Yan-ping,ZHU Peng-yu,TONG Ke.Effect of microstructure on mechanical properties of X70 pipeline steels[J].Transactions of Materials and Heat Treatment,2015,36(3):45-49.
- [22] 齐亮,胡义锋,张迎晖.X100 管线钢亚稳奥氏体组织演变动力学[J].材料热处理学报,2013,34(11):93-98.QI Liang,HU Yi-feng,ZHANG Ying-hui.Kinetics of metastable austenite transformation in X100 pipeline steel[J].Transactions of Materials and Heat Treatment,2013,34(11):93-98.
- [23] 贾书君,刘清友,彭伶俐,等.X100 管线钢的工艺控制[J].材料热处理学报,2011,32(11):28-33.JIA Shu-jun,LIU Qing-you,PENG Ling-li,et al.Process development of X100 pipe line steel[J].Transactions of Materials and Heat Treatment,32(11):28-33.
- [24] 李学达,尚成嘉,韩昌柴,等.X100管线钢焊接热影响区中链状M-A组元对冲击韧性和断裂机制的影响[J].金属学报,2016,52(9):1023-1035.LI Xue-da,SHANG Cheng-jia,HAN Chang-chai,et al.Influence of necklace-type M-A constituent on impact toughness and fracture mechanism in the heat affected zone of X100 pipeline steel[J].Acta Metallurgical Sinica,2016,52(9):1023-1035.
- [25] Kitade A,Kawabata T,Kimura S,et al.Clarification of micromechanism on brittle fracture initiation condition of TMCP steel with MA as the trigger point[J].Procedia Structural Integrity,2018,13:1845-1854.
文章评论(Comment):
|
||||||||||||||||||
|