几种常见焊接工艺热源模型的研究进展Research progress of heat source models for several common welding processes
洪小龙,黄本生,李天宁,黄思语
摘要(Abstract):
焊接数值模拟通过对复杂或不可观察的现象进行定量分析和对极端情况下尚不知的规律进行预测,实现对复杂焊接现象的模拟,揭示焊接现象本质和规律,可以优化结构和工艺设计,从而减少实验工作量,提高焊接接头质量。然而,由于焊接技术在工程中所面临的焊接情形愈加复杂,而热源模型作为焊接数值模拟的“灵魂”,合理选用及开发新型焊接热源模型就显得尤为重要。因此,研究焊接仿真热源模型的发展、二次开发和热源参数的确定对日后的工程应用具有指导意义。本文针对近几年热源模型在气体保护金属极电弧焊、等离子弧焊和激光-电弧复合焊数值模拟中的发展进行了系统综述,介绍了基于二次开发的热源模型的研究进展,总结了热源参数的确定方法,最后指出了焊接热源模型未来的研究重点。
关键词(KeyWords): 热源模型;数值模拟;二次开发;热源参数;焊接工艺
基金项目(Foundation): 四川省科技厅国际合作项目(2020YFH0151)
作者(Author): 洪小龙,黄本生,李天宁,黄思语
DOI: 10.13289/j.issn.1009-6264.2022-0481
参考文献(References):
- [1] Farias R M,Teixeira P R F,Vilarinho L O.An efficient computational approach for heat source optimization in numerical simulations of arc welding processes[J].Journal of Constructional Steel Research,2021,176:106382.
- [2] Wang B,Hu S J,Sun L,et al.Intelligent welding system technologies:State-of-the-art review and perspectives[J].Journal of Manufacturing Systems,2020,56:373-391.
- [3] Ferro P.Assessment of metallurgical and mechanical properties of welded joints via numerical simulation and experiments[J].Materials,2022,15(10):3694.
- [4] 徐加超,夏志新,陈鹏,等.中空环形激光热源建模及温度场有限元模拟[J].中国激光,2021,48(17):31-40.XU Jia-chao,XIA Zhi-xin,CHEN Peng,et al.Modeling of hollow ring laser heat source and finite element simulation of temperature field[J].Chinese Journal of Lasers,2021,48(17):31-40.
- [5] Zhen W,Li H,Wang Q.Simulation of residual stress in aluminum alloy welding seam based on computer numerical simulation[J].Optik,2022,258:168785.
- [6] 乔及森,芮正雷,王磊,等.基于组合热源模型焊剂片约束电弧焊T形接头温度场及应力场计算与试验研究[J].材料导报,2020,34(22):22142-22147.QIAO Ji-sen,RUI Zheng-lei,WANG Lei,et al.Temperature and residual stress field of flux bands constraining arc welding T-joint by FEA based on hybrid welding heat source model and experimental investigation[J].Materials Reports,2020,34(22):22142-22147.
- [7] 孙振邦,韩永全,杜茂化,等.厚板高强铝合金VPPA-MIG复合焊接热过程的计算与分析[J].稀有金属材料与工程,2020,49(8):2674-2682.SUN Zhen-bang,HAN Yong-quan,DU Mao-hua,et al.Thermal process calculation and analysis in VPPA-MIG hybrid welding of thick high-strength aluminum alloy plates[J].Rare Metal Materials and Engineering,2020,49(8):2674-2682.
- [8] 徐洲,李晓延,王小鹏,等.组合热源模型在焊接模拟中的应用现状与展望[J].材料导报,2022,36(6):152-157.XU Zhou,LI Xiao-yan,WANG Xiao-peng,et al.Application status and prospect of combined heat source model in welding simulation[J].Materials Reports,2022,36(6):152-157.
- [9] Goldak J,Chakravarti A,Bibby M.A new finite element model for welding heat sources[J].Metallurgical and Materials Transactions B,1984,15:299-305.
- [10] Giarollo D F,Mazzaferro C C P,Mazzaferro J A E.Comparison between two heat source models for wire-arc additive manufacturing using GMAW process[J].Journal of the Brazilian Society of Mechanical Sciences and Engineering,2021,44(1):7.
- [11] Zhao W M,Jiang W,Zhang H J,et al.3D finite element analysis and optimization of welding residual stress in the girth joints of X80 steel pipeline[J].Journal of Manufacturing Processes,2021,66:166-178.
- [12] Huang B S,Liu J Q,Zhang S S,et al.Effect of post-weld heat treatment on the residual stress and deformation of 20/0Cr18Ni9 dissimilar metal welded joint by experiments and simulations[J].Journal of Materials Research and Technology,2020,9(3):6186-6200.
- [13] 强伟,路永新,袁银辉,等.T形接头冷丝填充双热源协同焊接数值模拟[J].材料科学与工艺,2021,29(5):57-62.QIANG Wei,LU Yong-xin,YUAN Yin-hui,et al.Numerical simulation of T-joint welding with cold wire filling and double heat sources[J].Materials Science and Technology,2021,29(5):57-62.
- [14] 闻博,金成,黄诗铭,等.转向架构架T形接头单丝、双丝焊接热源模型及应力场数值模拟[J].电焊机,2021,51(7):99-103.WEN Bo,JIN Cheng,HUANG Shi-ming,et al.Heat source model and stress field numerical simulation of single-wire and double-wire welding for T-joint of bogie frame[J].Electric Welding Machine,2021,51(7):99-103.
- [15] Deng D,Murakawa H,Liang W.Numerical simulation of welding distortion in large structures[J].Computer Methods in Applied Mechanics and Engineering,2007,196(45):4613-4627.
- [16] Banik S D,Kumar S,Singh P K,et al.Distortion and residual stresses in thick plate weld joint of austenitic stainless steel:Experiments and analysis[J].Journal of Materials Processing Technology,2021,289:116944.
- [17] Wang H C,Wang Z J,Bai P F,et al.Optimized segmented heat source for the numerical simulation of welding-induced deformation in large structures[J].Advances in Engineering Software,2018,117:1-7.
- [18] Mondal A K,Kumar B,Bag S,et al.Development of avocado shape heat source model for finite element based heat transfer analysis of high-velocity arc welding process[J].International Journal of Thermal Sciences,2021,166:107005.
- [19] Liu Z M,Cui S L,Luo Z,et al.Plasma arc welding:Process variants and its recent developments of sensing,controlling and modeling[J].Journal of Manufacturing Processes,2016,23:315-327.
- [20] 忻建文,吴东升,李芳,等.小孔型等离子弧焊接条形气孔形成机理[J].焊接学报,2021,42(12):54-61.XIN Jian-wen,WU Dong-sheng,LI Fang,et al.Formation mechanism of elongated cavities in keyhole plasma arc welding[J].Transactions of the China Welding Institution,2021,42(12):54-61.
- [21] Li Y,Su C,Wang L,et al.An easy-to-use multi-physical model to predict weld pool geometry in keyhole plasma arc welding[J].Results in Engineering,2022,14:100429.
- [22] 李天庆,陈璐,张宇,等.气流再压缩等离子弧焊接电弧行为[J].焊接学报,2020,41(5):50-55.LI Tian-qing,CHEN Lu,ZHANG Yu,et al.Research on arc behavior in gas focusing plasma arc welding[J].Transactions of the China Welding Institution,2020,41(5):50-55.
- [23] 阮敬平,孙俊华,刘鹏.穿孔型等离子弧焊接316不锈钢的热场模拟[J].电焊机,2021,51(5):56-60.RUAN Jing-ping,SUN Jun-hua,LIU Peng.Thermal field simulation of keyhole plasma arc welding of 316 stainless steel[J].Electric Welding Machine,2021,51(5):56-60.
- [24] Tomsic M J,Jackson C E.Energy-distribution in keyhole mode plasma arc welds[J].Welding Journal,1974,53(3):109-115.
- [25] Hsu Y F,Rubinsky B.Two-dimensional heat transfer study on the keyhole plasma arc welding process[J].International Journal of Heat and Mass Transfer,1988,31(7):1409-1421.
- [26] Nehad A.Enthalpy technique for solution of stefan problems:Application to the keyhole plasma arc welding process involving moving heat source[J].International Communications in Heat and Mass Transfer,1995,22(6):779-790.
- [27] Fan H G,Kovacevic R.Keyhole formation and collapse in plasma arc welding[J].Journal of Physics D:Applied Physics,1999,32(22):2902-2909.
- [28] 刘望兰,胡绳荪,马立.三维静态锥体热源穿孔等离子弧焊接熔池的数值模拟[J].焊接学报,2006(6):33-36.LIU Wang-lan,HU Sheng-sun,MA Li.Numerical simulation of fluid flow field in plasma arc welding with 3D static conical heat source[J].Transactions of the China Welding Institution,2006(6):33-36.
- [29] 王怀刚,武传松,张明贤.小孔等离子弧焊接热场的有限元分析[J].焊接学报,2005(7):49-53.WANG Huai-gang,WU Chuan-song,ZHANG Ming-xian.Finite element method analysis of temperature field in keyhole plasma arc welding[J].Transactions of the China Welding Institution,2005(7):49-53.
- [30] Wu C S,Wang H G,Zhang Y M.A new heat source model for keyhole plasma arc welding in FEM analysis of the temperature profile[J].Welding Journal,2006,85(12):284-291.
- [31] 姚金难,韩永全,吴永军,等.穿孔等离子弧焊接温度场的数值模拟与分析[J].内蒙古工业大学学报(自然科学版),2012,31(1):29-33.YAO Jin-nan,HAN Yong-quan,WU Yong-jun,et al.Numerical simulation of temperature fields in keyhole plasma arc welding[J].Journal of Inner Mongolia University of Technology(Natural Science Edition),2012,31(1):29-33.
- [32] 韩永全,赵鹏,杜茂华,等.铝合金变极性等离子弧焊温度场数值模拟[J].机械工程学报,2012,48(24):33-37.HAN Yong-quan,ZHAO Peng,DU Mao-hua,et al.Numerical simulation of aluminum alloys variable polarity plasma arc welding temperature field[J].Journal of Mechanical Engineering,2012,48(24):33-37.
- [33] Wu C S,Zhang T,Feng Y H.Numerical analysis of the heat and fluid flow in a weld pool with a dynamic keyhole[J].International Journal of Heat and Fluid Flow,2013,40:186-197.
- [34] 张晓宇,武传松.考虑小孔后向偏移的等离子弧焊接热过程模型[J].机械工程学报,2015,51(14):66-71.ZHANG Xiao-yu,WU Chuan-song.Thermal process model of plasma arc welding with considering the backside keyhole deviation[J].Journal of Mechanical Engineering,2015,51(14):66-71.
- [35] 胡庆贤,徐斌,王晓丽,等.穿孔型等离子弧焊接热-力耦合模型优化[J].焊接学报,2017,38(1):13-16.HU Qing-xian,XU Bin,WANG Xiao-li,et al.Optimization of thermal mechanical coupled model of KPAW[J].Transactions of the China Welding Institution,2017,38(1):13-16.
- [36] 刘书高.热丝K-PAW焊接熔池—小孔热场与流场动态行为的数值分析[D].镇江:江苏科技大学,2014.LIU Shu-gao.Numerical analysis of hot wire K-PAW welding molten pool—Dynamic behavior of pore thermal field and flow field[D].Zhenjiang:Jiangsu University of Science and Technology,2014.
- [37] 张涛.PAW焊接熔池—小孔流场与热场动态行为的数值分析[D].济南:山东大学,2011.ZHANG Tao.Numerical analysis of the dynamic behavior of PAW welding molten pool-small pore flow field and thermal field[D].Jinan:Shandong University,2011.
- [38] 郎瑞卿,韩永全,白雪宇,等.变极性频率对铝合金变极性等离子弧穿孔立焊熔池稳定性的影响机理[J].稀有金属材料与工程,2022,51(4):1172-1182.LANG Rui-qing,HAN Yong-quan,BAI Xue-yu,et al.Impacting mechanism of variable polarity frequency on weld pool stability in variable polarity plasma arc keyhole vertical welding of aluminum alloy[J].Rare Metal Materials and Engineering,2022,51(4):1172-1182.
- [39] 李岩,陈岩,王领,等.等离子弧焊接多物理场耦合输运模型[J].工程热物理学报,2021,42(8):2113-2121.LI Yan,CHEN Yan,WANG Ling,et al.A multiphysics coupled transport model for plasma arc welding[J].Journal of Engineering Thermophysics,2021,42(8):2113-2121.
- [40] Wu D S,Tashiro S,Hua X M,et al.Analysis of the energy propagation in the keyhole plasma arc welding using a novel fully coupled plasma arc-keyhole-weld pool model[J].International Journal of Heat and Mass Transfer,2019,141:604-614.
- [41] Steen W M.Arc augmented laser processing of materials[J].Journal of Applied Physics,1980,51(11):5636-5641.
- [42] 时尚,刘丰刚,黄春平,等.激光复合热源焊接技术的研究进展[J].材料导报,2022,36(11):170-177.SHI Shang,LIU Feng-gang,HUANG Chun-ping,et al.Research progress of laser hybrid heat source welding technology[J].Materials Reports,2022,36(11):170-177.
- [43] Taheri M,Kazemi A,Gurusamy P,et al.Features of hybrid laser-arc welding of GTD-111 superalloy compared to laser beam welding[J].Materials Letters,2022,309:131384.
- [44] Bunaziv I,Akselsen O M,Ren X B,et al.Laser beam and laser-arc hybrid welding of aluminium alloys[J].Metals,2021,11(8):1150.
- [45] Zhang F L,Zhang H,Liu S Y,et al.Numerical simulation of laser-arc hybrid welding of high strength steel[J].Journal of Physics:Conference Series,2020,1676(1):012162.
- [46] Wang C,Sun Y L,Chen G Y,et al.A simplified modelling approach for thermal behaviour analysis in hybrid plasma arc-laser additive manufacturing[J].International Journal of Heat and Mass Transfer,2022,195:123157.
- [47] 严春妍,张浩,朱子江,等.X80 管线钢多道激光-MIG 复合焊残余应力分析[J].焊接学报,2021(9):28-34.YAN Chun-yan,ZHANG Hao,ZHU Zi-jiang,et al.Analysis of welding residual stress in multi-pass hybrid laser-MIG welded X80 pipeline steel[J].Transactions of the China Welding Institution,2021,42(9):28-34.
- [48] 桂晓燕,高向东,孙友松,等.激光电弧复合焊变形及残余应力的数值分析[J].应用激光,2021,41(3):651-656.GUI Xiao-yan,GAO Xiang-dong,SUN You-song,et al.Numerical analysis of deformation and residual stress of laser arc hybrid welding[J].Applied Laser,2021,41(3):651-656.
- [49] Pittner A,Weiss D,Schwenk C,et al.Methodology to improve applicability of welding simulation[J].Science and Technology of Welding and Joining,2008,13(6):496-508.
- [50] Cho M H,Farson D F.Simulation study of a hybrid process for the prevention of weld bead hump formation[J].Welding Journal,2007,86(9):253-262.
- [51] Cho W I,Na S J,Cho M H,et al.Numerical study of alloying element distribution in CO2 laser-GMA hybrid welding[J].Computational Materials Science,2010,49(4):792-800.
- [52] Cho Y T,Cho W I,Na S J.Numerical analysis of hybrid plasma generated by Nd:YAG laser and gas tungsten arc[J].Optics and Laser Technology,2011,43(3):711-720.
- [53] Meng X M,Qin G L,Su Y H,et al.Numerical simulation of large spot laser plus MIG arc brazing-fusion welding of Al alloy to galvanized steel[J].Journal of Materials Processing Technology,2015,222:307-314.
- [54] Churiaque C,Sanchez-Amaya J M,Ustundag O,et al.Improvements of hybrid laser arc welding for shipbuilding T-joints with 2F position of 8 mm thick steel[J].Optics and Laser Technology,2021,143:107284.
- [55] Qian X Y,Ye X,Hou X,et al.Research on residual stress distribution in different areas of laser-MAG arc hybrid welding by numerical simulation[J].Journal of Physics:Conference Series,2022,2160(1):012026.
- [56] Gao Z G,Ojo O A.Modeling analysis of hybrid laser-arc welding of single-crystal nickel-base superalloys[J].Acta Materialia,2012,60(6):3153-3167.
- [57] Gao X S,Wu C S,Goecke S F,et al.Numerical simulation of temperature field,fluid flow and weld bead formation in oscillating single mode laser-GMA hybrid welding[J].Journal of Materials Processing Technology,2017,242:147-159.
- [58] 张拓,张宏,刘佳.激光-电弧复合焊接数值模拟的热源模型[J].应用激光,2016,36(1):58-62.ZHANG Tuo,ZHANG Hong,LIU Jia.Heat source model for numerical simulation of laser-arc composite welding[J].Applied Laser,2016,36(1):58-62.
- [59] Piekarska W,Kubiak M,Vasko M.Numerical estimation of the shape of weld and heat affected zone in laser-arc hybrid welded joints[J].Procedia Engineering,2017,177:114-120.
- [60] Cho W I,Na S J,Cho M H,et al.Numerical study of alloying element distribution in CO2 laser-GMA hybrid welding[J].Computational Materials Science,2010,49(4):792-800.
- [61] Chen X Y,Yu G,He X L,et al.Numerical study of heat transfer and solute distribution in hybrid laser-MIG welding[J].International Journal of Thermal Sciences,2020,149:106182.
- [62] Rosenthal D.Mathematical theory of heat distribution during welding and cutting[J].Welding Journal,1941,20(5):220-234.
- [63] Pavelic V.Experimental and computed temperature histories in gas tungsten arc welding of thin plates[J].Welding Journal Research Supplement,1969,48:296-305.
- [64] Eagar T W,Tsai N S.Temperature fields produced by traveling distributed heat sources[J].Welding Journal,1983,62(12):346-355.
- [65] Mirzaee-Sisan A,Wu G.Residual stress in pipeline girth welds-A review of recent data and modelling[J].International Journal of Pressure Vessels and Piping,2019,169:142-152.
- [66] 李陈峰,王庭策,刘葳,等.基于Shell-Solid单元混合建模技术的焊接数值模拟方法[J].哈尔滨工程大学学报,2022,43(2):181-187.LI Chen-feng,WANG Ting-ce,LIU Wei,et al.A welding numerical simulation method based on Shell-Solid element hybrid modeling technology[J].Journal of Harbin Engineering University,2022,43(2):181-187.
- [67] Chujutalli J H,Louren?o M I,Estefen S F.Experimental-based methodology for the double ellipsoidal heat source parameters in welding simulations[J].Marine Systems & Ocean Technology,2020,15(2):110-123.
- [68] Bjelic M,Radicevic B,Kovanda K,et al.Multi-objective calibration of the double-ellipsoid heat source model for GMAW process simulation[J].Thermal Science,2022,26(3):2081-2092.
- [69] Qin B,Qu R,Xie Y F,et al.Numerical simulation and experimental study on the TIG (A-TIG) welding of dissimilar magnesium alloys[J].Materials,2022,15(14):4922.
- [70] Gao Z H,Han B,Li L Y,et al.Numerical simulation of residual stress in post internal-welding process of bimetal composite pipe and optimization of welding sequence[J].International Journal of Pressure Vessels and Piping,2022,199:104730.
- [71] 李娅娜,刘嘉浩.基于焊接质量双椭球热源形状参数的简化模型[J].焊接,2021(8):7-11.LI Ya-na,LIU Jia-hao.Simplified model of heat source shape parameters of double ellipsoid based on welding quality[J].Welding & Joining,2021(8):7-11.
- [72] 张红卫,桂良进,范子杰.焊接热源参数优化方法研究及验证[J].清华大学学报(自然科学版),2022,62(2):367-373.ZHANG Hong-wei,GUI Liang-jin,FAN Zi-jie.Research and verification of welding heat source parameter optimization model[J].Journal of Tsinghua University(Science and Technology),2022,62(2):367-373.
- [73] Jia X L,Xu J,Liu Z H,et al.A new method to estimate heat source parameters in gas metal arc welding simulation process[J].Fusion Engineering and Design,2014,89(1):40-48.
- [74] Fu G M,Gu J J,Lourenco M I,et al.Parameter determination of double-ellipsoidal heat source model and its application in the multi-pass welding process[J].Ships and Offshore Structures,2015,10(2):204-217.
- [75] Belitzki A,Marder C,Huissel A,et al.Automated heat source calibration for the numerical simulation of laser beam welded components[J].Production Engineering,2016,10(2):129-136.
- [76] Tafarroj M M,Kolahan F.A comparative study on the performance of artificial neural networks and regression models in modeling the heat source model parameters in GTA welding[J].Fusion Engineering and Design,2018,131:111-118.
文章评论(Comment):
|
||||||||||||||||||
|