层状异质结构316L奥氏体不锈钢的腐蚀行为Corrosion behavior of 316L austenitic stainless steel with heterogeneous lamella structure
袁滔,黎科奇,刘朝泽,李绍宏,李俊,周烈兴,起华荣,卜恒勇,李萌蘖
摘要(Abstract):
通过变形量为78%的冷轧以及750℃退火处理10和15 min获得由不同比例的再结晶片层、纳米/超细晶片层和残留奥氏体片层构成的层状异质(HL)结构316L奥氏体不锈钢,利用电化学腐蚀试验测试其耐腐蚀性能。结果表明,具有HL结构的试样的耐腐蚀性能优于冷轧试样。这主要归因于退火过程中部分再结晶消除了冷变形组织中大部分腐蚀敏感区域,同时,纳米/超细晶和残留奥氏体中的高密度的低角度晶界具有更强的再钝化能力和耐腐蚀性能,有效抑制亚稳态点蚀坑的扩展。但随着退火时间延长,试样的再结晶程度增加、低角度晶界比例下降,减弱了对亚稳态点蚀坑扩展的抑制作用,导致耐腐蚀性能下降。
关键词(KeyWords): 奥氏体不锈钢;层状异质结构;腐蚀行为;亚稳态点蚀;晶界
基金项目(Foundation): 集成计算材料工程研发平台(202103AA080017);; 昆明理工大学分析测试基金(2022M20212230187)
作者(Author): 袁滔,黎科奇,刘朝泽,李绍宏,李俊,周烈兴,起华荣,卜恒勇,李萌蘖
DOI: 10.13289/j.issn.1009-6264.2024-0101
参考文献(References):
- [1] Chen X,Yang L,Dai H,et al. Exploring factors controlling pre-corrosion fatigue of 316L austenitic stainless steel in hydrofluoric acid[J]. Engineering Failure Analysis,2020,113(4):104556.
- [2] Li H,Liu W,Chen L,et al. Corrosion crack failure analysis of 316L hydraulic control pipeline in high temperature aerobic steam environment of heavy oil thermal recovery well[J]. Engineering Failure Analysis,2022,138(2):106297.
- [3] Santamaria M,Tranchida G,Di Franco F. Corrosion resistance of passive films on different stainless steel grades in food and beverage industry[J]. Corrosion Science,2020,173:108778.
- [4]程丹丹,熊毅,马云飞,等.固溶温度对316LN奥氏体不锈钢微观组织和高温力学性能的影响[J].材料热处理学报,2022,43(1):113-120.CHENG Dan-dan,XIONG Yi,MA Yun-fei,et al. Effect of solution temperature on microstructure and high temperature mechanical properties of 316LN austenitic stainless steel[J]. Transactions of Materials and Heat Treatment,2022,43(1):113-120.
- [5] Xiong Y,Yue Y,Lu Y,et al. Cryorolling impacts on microstructure and mechanical properties of AISI 316 LN austenitic stainless steel[J]. Materials Science and Engineering A,2018,709:270-276.
- [6] Mohd Yusuf S,Chen Y,Yang S,et al. Microstructural evolution and strengthening of selective laser melted 316L stainless steel processed by high-pressure torsion[J]. Materials Characterization,2020,159:110012.
- [7] Hajizadeh K,Kurzydlowski K J. On the possibility of fabricating fully austenitic sub-micron grained AISI 304 stainless steel via equal channel angular pressing[J]. Materials Today Communications,2023,35:105641.
- [8] Mohammadzehi S,Mirzadeh H,Sohrabi M J,et al. Elucidating the effects of cold rolling route on the mechanical properties of AISI316L austenitic stainless steel[J]. Materials Science and Engineering A,2023,865:144616.
- [9] Odnobokova M,Belyakov A, Kaibyshev R. Effect of severe cold or warm deformation on microstructure evolution and tensile behavior of a 316L stainless steel[J]. Advanced Engineering Materials,2015,17(12):1812-1820.
- [10] Fang T H,Tao N R. Martensitic transformation dominated tensile plastic deformation of nanograins in a gradient nanostructured316L stainless steel[J]. Acta Materialia,2023,248:118780.
- [11] Du J,Liu G,Feng Y,et al. Strength and ductility enhancement of plain carbon steel by heterostructure design[J]. Materials Science and Engineering A,2023,868:144770.
- [12] Wu X,Yang M,Yuan F,et al. Heterogeneous lamella structure unites ultrafine-grain strength with coarse-grain ductility[J].Proceedings of the National Academy of Sciences,2015,112(47):14501-14505.
- [13] Wang T,Zha M,Du C,et al. High strength and high ductility achieved in a heterogeneous lamella-structured magnesium alloy[J].Materials Research Letters,2022,11(3):187-195.
- [14] Romero-Resendiz L, El-Tahawy M, Zhang T, et al. Heterostructured stainless steel:Properties, current trends, and future perspectives[J]. Materials Science and Engineering R:Reports,2022,150:100691.
- [15]于崇浩,刘佳,邓想涛,等.异构片层结构304不锈钢的制备及其力学性能[J].金属热处理,2022,47(2):86-90.YU Chong-hao,LIU Jia,DENG Xiang-tao,et al. Preparation and mechanical properties of 304 stainless steel with heterogeneous lamella structure[J]. Heat Treatment of Metals,2022,47(2):86-90.
- [16] Shen Y F,Li X X,Sun X,et al. Twinning and martensite in a 304 austenitic stainless steel[J]. Materials Science and Engineering A,2012,552,514-522.
- [17] J?rvenp??A,Ghosh S,Khosravifard A,et al. A new processing route to develop nano-grained structure of a TRIP-aided austenitic stainless-steel using double reversion fast-heating annealing[J]. Materials Science and Engineering A,2021,808(18):140917.
- [18] Ma G,Wu G,Shi W,et al. Effect of cold rolling on the corrosion behavior of Ta-4W alloy in sulphuric acid[J]. Corrosion Science,2020,176:108924.
- [19] Zhao Y,Liu W,Zhang T,et al. Assessment of the correlation between M23C6 precipitates and pitting corrosion resistance of 0Cr13martensitic stainless steel[J]. Corrosion Science,2021,189:109580.
- [20] Zhao M,Wu H,Lu J,et al. Effect of grain size on mechanical property and corrosion behavior of a metastable austenitic stainless steel[J]. Materials Characterization,2022,194:112360.
- [21]樊学华,于勇,张子如,等. 316L奥氏体不锈钢在不同电位下的点蚀和再钝化行为研究[J].表面技术,2020,49(7):287-293.FAN Xue-hua,YU Yong,ZHANG Zi-ru,et al. Pitting and repassivation behavior of 316l austenitic stainless steel under different potentials[J]. Surface Technology,2020,49(7):287-293.
- [22] Fu Q,Wang C,Wu C,et al. Investigating the combined effects of wide stacking faults and grain size on the mechanical properties and corrosion resistance of high-purity Mg[J]. Journal of Alloys and Compounds,2022,927:167018.
- [23] Sui F,An T,Zheng S,et al. Influence of effective strain on the corrosion behavior of nickel-based GH4710 superalloy in chloride solutions[J]. Corrosion Science,2022,204:110386.
- [24] Moayed M H,Newman R C. Evolution of current transients and morphology of metastable and stable pitting on stainless steel near the critical pitting temperature[J]. Corrosion Science,2006,48(4):1004-1018.
- [25] Almuaili F A,Mcdonald S A,Withers P J,et al. Strain-induced reactivation of corrosion pits in austenitic stainless steel[J].Corrosion Science,2017,125:12-19.
- [26]蔡锋,方铁辉.晶粒尺寸梯度分布对316L不锈钢耐腐蚀性能的影响[J].粉末冶金材料科学与工程,2021,26(3):227-234.CAI Feng,FANG Tie-hui. Effect of gradient distribution of grain size on corrosion resistance of 316L stainless steel[J]. Materials Science and Engineering of Powder Metallurgy,2021,26(3):227-234.
- [27] Pradhan S K,Bhuyan P,Mandal S. Influence of the individual microstructural features on pitting corrosion in type 304 austenitic stainless steel[J]. Corrosion Science,2019,158:108091.
- [28]袁萃琪.晶粒组织对316型奥氏体不锈钢电化学腐蚀行为的影响研究[D].南昌:南昌航空大学,2022.YUAN Cui-qi. Study on the effect of grain structure on electrochemical corrosion behavior of 316 austenitic stainless steel[D].Nanchang:Nanchang Hangkong University 2022.
- [29] Yan F K,Liu G Z,Tao N R,et al. Strength and ductility of 316L austenitic stainless steel strengthened by nano-scale twin bundles[J]. Acta Materialia,2012,60(3):1059-1071.
- [30] Eguchi K. Quantitative analysis of initiation site of pitting corrosion on type 304 austenitic stainless steel[J]. Corrosion Science,2023,221:111312.
- [31] Randle V,Coleman M,Waterton M. The role ofΣ9 boundaries in grain boundary engineering[J]. Metallurgical and Materials Transactions A,2011,42(3):582-586.
- [32] Thota H,Jeyaraam R, Bairi L R, et al. Grain boundary engineering and its implications on corrosion behavior of equiatomic Co Cr Fe MnNi high entropy alloy[J]. Journal of Alloys and Compounds,2021,888:161500.
- [33] Qi J J,Huang B Y,Wang Z H,et al. Dependence of corrosion resistance on grain boundary characteristics in a high nitrogen Cr Mn austenitic stainless steel[J]. Journal of Materials Science&Technology,2017,33(12):1621-1628.
- [34]王标,杜楠,张浩,等. 304不锈钢点蚀产物对亚稳态点蚀萌生和稳态蚀孔生长的加速作用[J].中国腐蚀与防护学报,2019,39(4):338-344.WANG Biao,DU Nan,ZHANG Hao,et al. Accelerating effect of pitting corrosion products on metastable pitting initiation and the stable pitting growth of 304 stainless steel[J]. Journal of Chinese Society for Corrosion and Protection,2019,39(4):338-344.
- [35] Yang Z,Ma A,Xu B,et al. Corrosion behavior of AZ91 Mg alloy with a heterogeneous structure produced by ECAP[J]. Corrosion Science,2021,187:109517.
- [36] Feng X,Lu X,Zuo Y,et al. The effect of deformation on metastable pitting of 304 stainless steel in chloride contaminated concrete pore solution[J]. Corrosion Science,2016,103:223-229.
文章评论(Comment):
|
||||||||||||||||||
|